JORNADAS Atecyr

Nuevas soluciones energéticas en el campo de la climatización

Miércoles, 22 de mayo de 2013 18:00 a 20:30 Centro de Excelencia del Metal

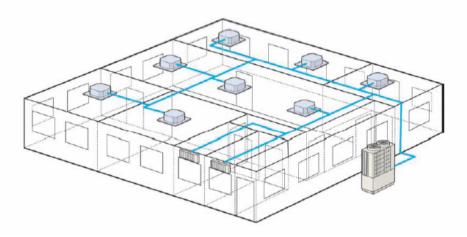
NUEVAS SOLUCIONES ENERGÉTICAS EN EL CAMPO DE LA CLIMATIZACION

TOYOTA group

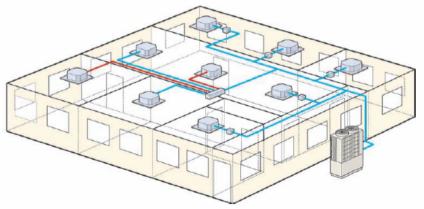
Sistemas KX6 y KXR6

KX6

CARACTERÍSTICAS Y REFERENCIAS


A MITSUBISHI HEAVY INDUSTRIES, LTD.

Caudal variable de refrigerante KX

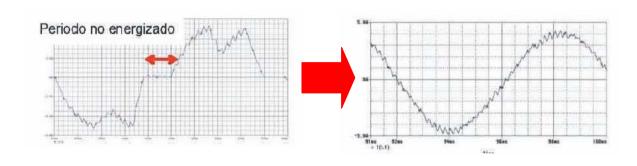

BOMBA DE CALOR

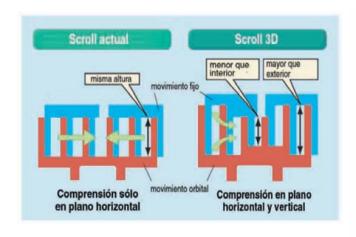
Sistema a 2 tubos

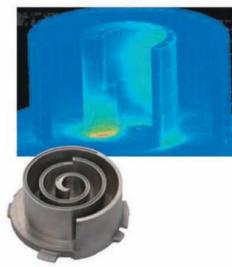
Caudal variable de refrigerante KXR

CON RECUPERACIÓN DE CALOR

Sistema a 3 tubos


Podemos suministrar frío y calor simultáneamente


Novedades Sistema VRF KX6


Nuevo Control Inverter (Control Vector)

- Cambios más suaves de velocidad baja a alta
- Suaviza picos de arranque
- Mayor eficiencia energética a baja velocidad

Compresor Scroll 3D

- Compresión del gas en los ejes axial y radial
 - Mayor rendimiento

Novedades Sistema VRF KX6

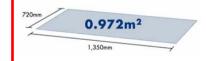
Todo los Compresores Inverter

Potencia UE (kW)	Número compresores inverter
11,2 – 33,5	1
40 – 68	2
73,5 – 136	4

- No picos de arranque
 - Reparto de horas de funcionamiento
- Mayor disponibilidad en caso de avería

Monitorización de parámetros de funcionamiento en mandos

- Visualización de 40 parámetros de funcionamietno
- Mayor facilidad de mantenimiento



Dimensiones Unidades Exteriores KX6

Potencias (kW)	Formato	Dimensiones (alto x ancho x fondo)		
11,2 - 15,5		845 x 970 x 370		
22,4 – 33,5		1.675 x 1.080 x 480		
40 – 45		1.690 x 1.350 x 720		
50,4 - 68		2.048 x 1.350 x 720		
73,5 - 136		2.048 x 2.700 x 1.440		

Hasta 68 kW en menos de 1m2

Rango de capacidad conectable

Modelo UE	Formato	Número UI	Rango Capacidad (%)
FDC112	T.A.	2 - 6	80 - 150
FDC140-155		2 – 8	80 – 150
FDC224-335		1 – 22	50 – 150
FDC400-450		1 - 40	50 – 200
FDC504-680		1 - 49	50 – 160
FDC735-960		2 – 69	50 – 160
FDC1010-1360		2 – 80	50 - 130

Destacamos:

Equipo de VRF más compacto del mercado

- VRF 8x1 con capacidad de 150%
- Altos coeficientes de rendimiento:4,33 COP (4 CV)
- **Fácil de instalar**, 1 sólo ventilador
- Largo alcance y versatilidad de instalación
- Alimentación monofásica o trifásica

Ideal para viviendas y pequeñas instalaciones

Destacamos para el VRF con recuperación de calor los rendimientos:

VALORES COEFICIENTES EER/COP A DIFERENTES SITUACIONES DE FUNCIONAMIENTO. RELACIÓN CONEXIÓN 110%

Modo de operación		Pot Refrig (kW)	Pot Calef. (kW)	Tª Exterior (°C)	T ^a Interior (°C)	EER	СОР
100% Refrigeración	o% Calefacción	28,50	0,00	35	27/22	3,99	0,00
				7		6,	01
25% Refrigeración 75	75% Calefacción	7,06	21,49	11	27/22	6,35	
				15		6,62	
50% Refrigeración	50% Calefacción	12,49	14,70	7	27/22	7,52	
				11		7,87	
				15		8,:	29
	75% Refrigeración 25% Calefacción 20,26		7,23	7	27/22	8,39	
75% Refrigeración		20,26		11		7,94	
				15		7,	44
o% Refrigeración	100% Calefacción	0,00	32,40	7	27/22	0,00	4,24

Información extraída de la Guía Técnica: Ahorro y recuperación de energía en instalaciones de climatización. Editada por el IDAE

CASO PRÁCTICO - SISTEMA VRF

Tipo de instalación: Oficinas

Ubicación: Madrid

Demanda en frío: 34 kW Demanda en calor: 36 kW

Condiciones para el cálculo de la demanda:

VERANO:

Temp. Exterior: 35,5 °C DB

Temp. Interior: 24°C DB y 18,6 °C WB

INVIERNO:

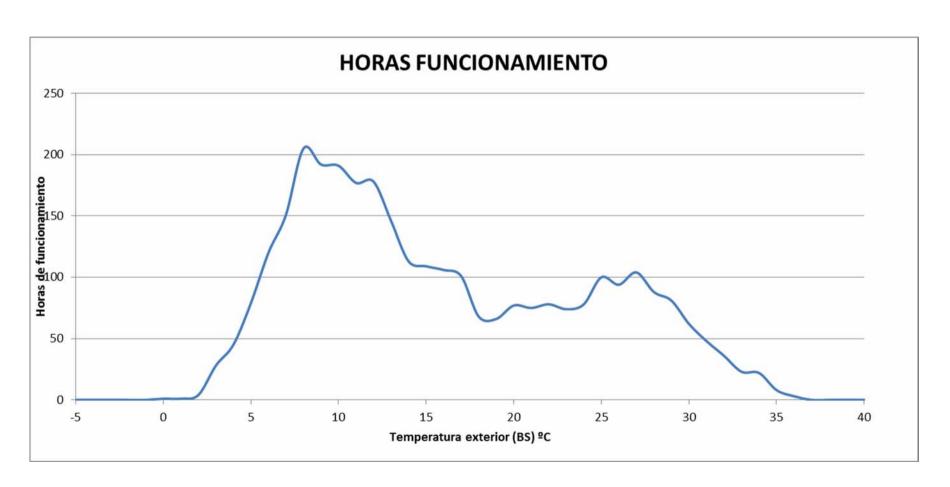
Temp. Exterior: -3 °C DB y -4,5 WB Temp. Interior: 20°C DB y 19 °C WB

Horario funcionamiento:

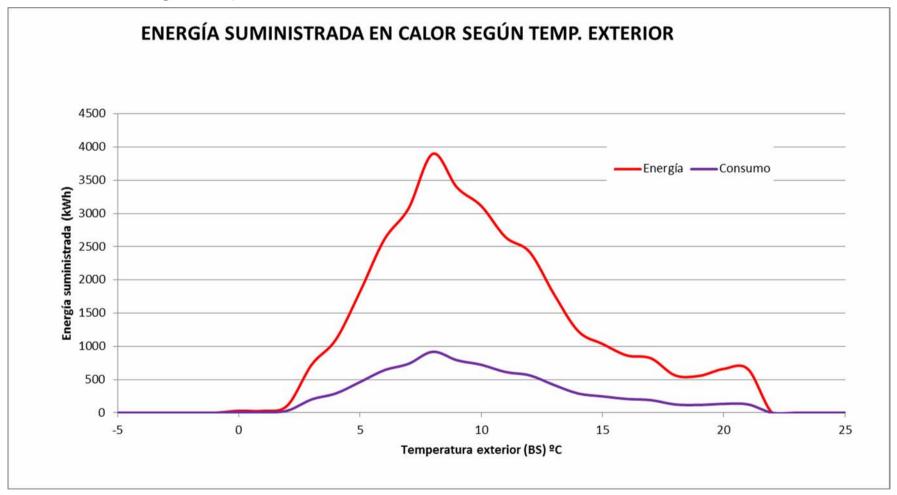
VERANO E INVIERNO:

De Lunes a Viernes: 08:00 a 19:00

Sábados: Cerrado Domingo: Cerrado


Equipo seleccionado: FDC335KXE6

CASO PRÁCTICO - SISTEMA VRF

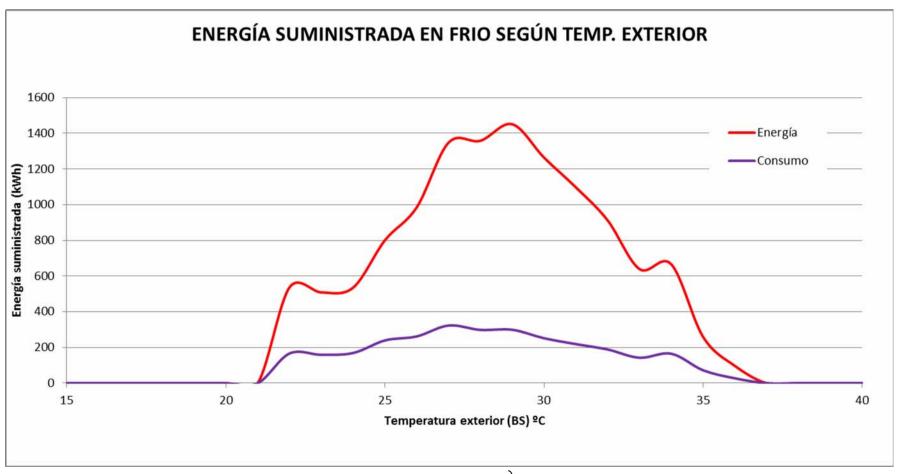

Medias horarias acumuladas por temperatura exterior en un año:

LUMELCO

CASO PRÁCTICO - SISTEMA VRF

Análisis energético para el funcionamiento en modo calor:

Energía suministrada en modo calor (kWh): 33.137 Energía consumida en modo calor (kWh): 7.856



Eficacia estacional para calor:

CASO PRÁCTICO - SISTEMA VRF

Análisis energético para el funcionamiento en modo frio:

Energía suministrada en modo frío (kWh): 12.458 Energía consumida en modo frío (kWh): 2.985

Eficacia estacional para frío:

CASO PRÁCTICO - SISTEMA VRF

Comparativa en modo calor frente a una caldera de gasóleo:

Rendimiento de la caldera: 90 %

Precio kWh eléctrico: 0,15 Precio kWh gasóleo: 0,089

Gracias al sistema VRF coseguimos:

Producción de agua caliente sanitaria hasta 90 ºC

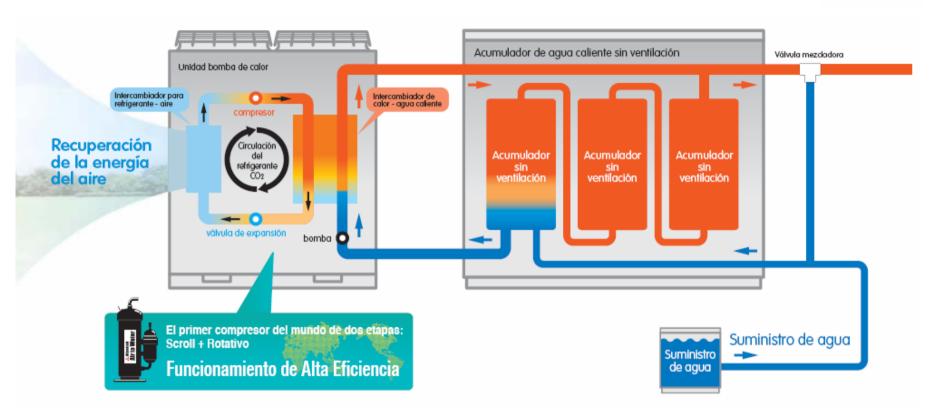
La Directiva 2009/28/CE de la Unión Europea de 23 de abril de 2009 contempla por primera vez la energía aerotérmica como fuente de energía renovable

CARACTERÍSTICAS PRINCIPALES

1.- Refrigerante utilizado: CO₂

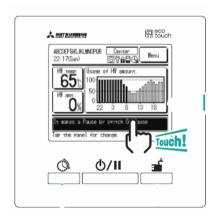
- Temperatura del agua entre 60 y 90 °C
- Refrigerante Ecológico

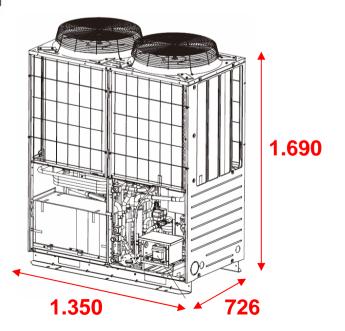
2.- Desarrollo del nuevo compresor de dos etapas de alto rendimiento para CO2



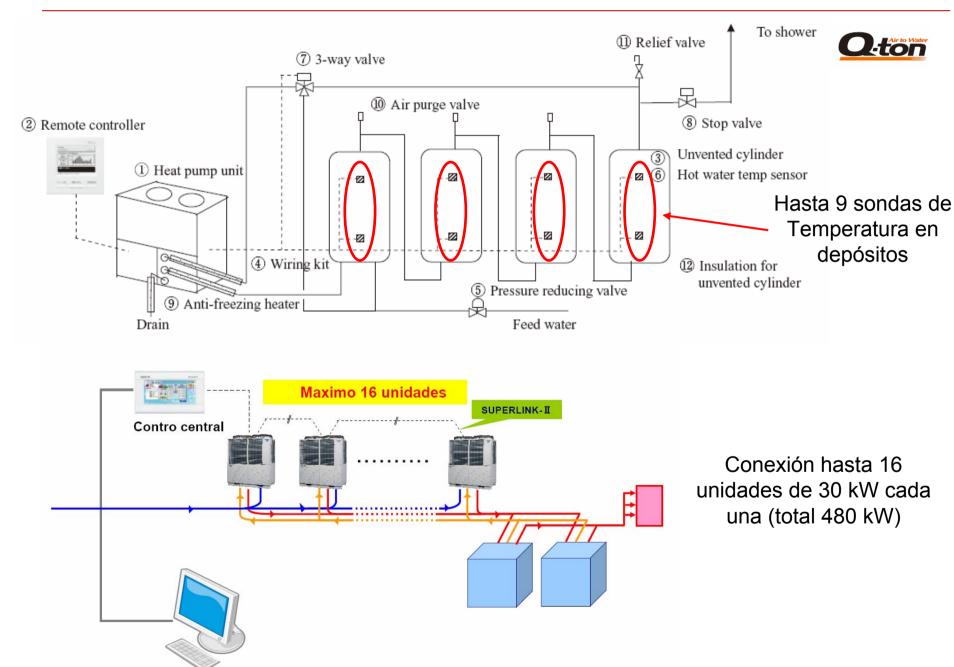
CARACTERÍSTICAS PRINCIPALES

- Producción de Agua Caliente entre 60 y 90 °C mediante aerotermia
- Equipo modular de 30 kW con compresor de CO2 de alta eficiencia
- Elevado rendimiento (COP medio estacional de 4,3) incluso a temperaturas extremas

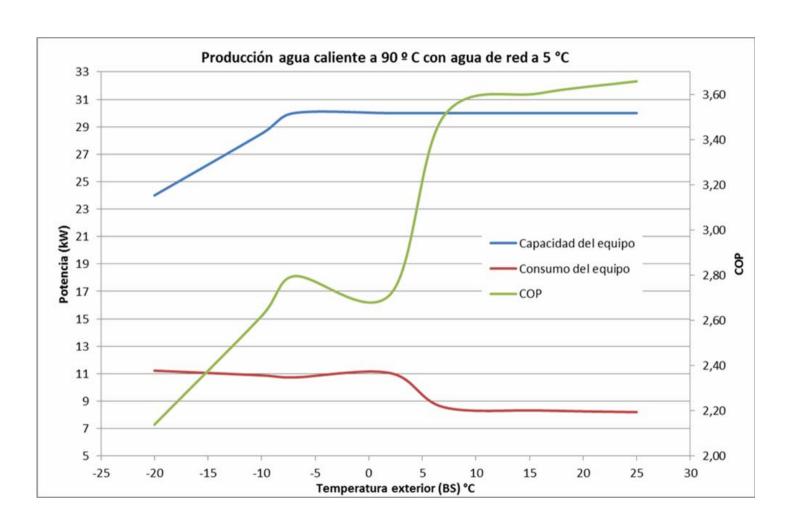

CARACTERÍSTICAS PRINCIPALES


[Capacidad en calefacción (kW)]

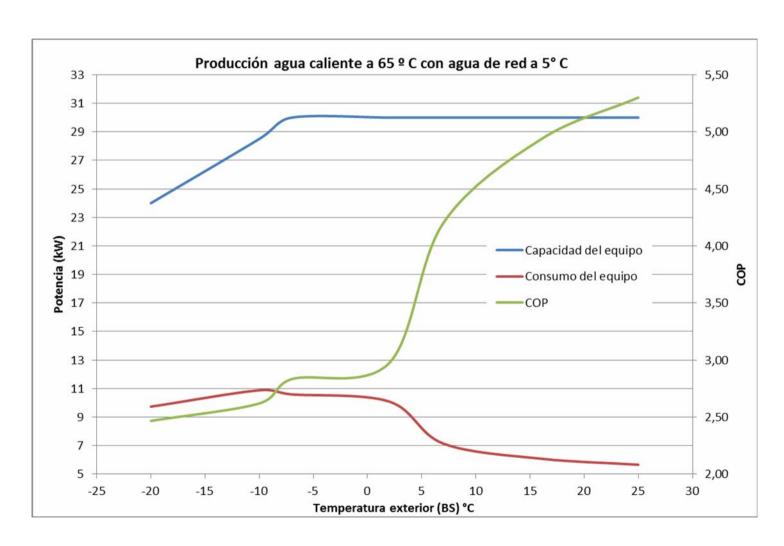
Rendimiento nominal hasta -7°C



Funcionamiento mediante control táctil con visualización de parámetros de funcionamiento



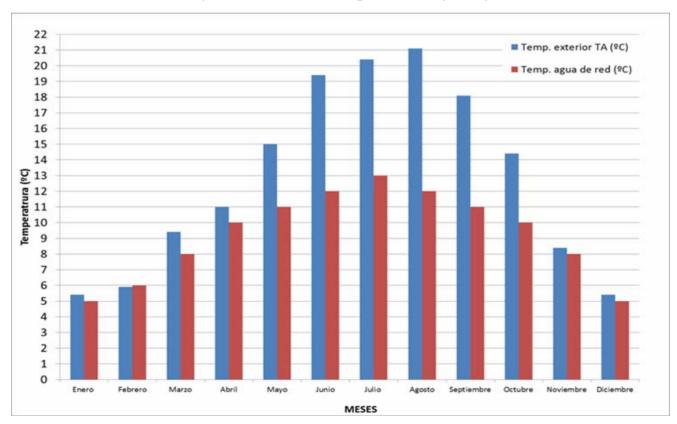
3.- Gran eficiencia energética: producción de agua caliente a 90°C



3.- Gran eficiencia energética: producción de agua caliente a 65ºC

INSTALACIÓN: Residencia de ancianos situada en Pamplona

Datos de la residencia:


Ocupación: 50 personas
 Superficie: 2.900 m²

- Uso del agua caliente sanitaria: baños, duchas y cocina.

- Acumulación de agua caliente sanitaria a 65 °C.

- Litros de acumulación: 4000 litros

Datos mensuales de temperatura media de agua de red y temperatura media exterior:

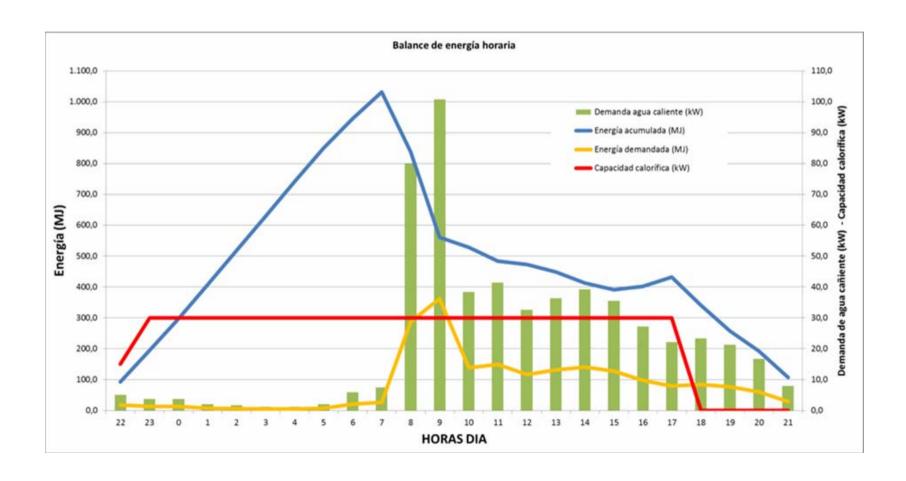
Análisis de la demanda diaria:

la e (I/h)	
e (I/h)	
318	

Consideramos la demanda de agua caliente igual para todos los días del año.

Demanda punta: entre las 8 y 9 de la mañana con un pico de 1.447 l/h, es decir, 100,8 kW (tomando agua de red a 5 °C) de potencia calorífica a las 9 horas.

Desde las 23 horas a las 8 horas:


- consumo de la demanda de agua caliente muy pequeña
- posibilidad de aplicar la tarifa reducida de consumo eléctrico para acumular durante la noche

Análisis de la demanda, ejemplo del mes de ENERO:

Partiendo de la demanda y condiciones de temperatura exterior (TA) de media mensual y temperaturas medias de agua de red mensuales podemos trazar la gráfica mensual de demanda de la instalación junto con el consumo mensual del equipo seleccionado:

Energía eléctrica anual consumida: 46.149 kWh energía térmica anual producida: 192.642 kWh

CALDERA DE GAS:

Precio 0,15 €/kWhe

Precio 0,05 €/kWh gas

Rend. caldera: 85 %

Costo anual caldera de gas: 11.332 €

Costo anual bomba de calor QTON: 6.922€

AHORRO
ECONÓMICO

4.410

€/año

Amortización: 5,2 años

AHORRO ENERGÉTICO 79 %

AHORRO
EMISIONES
CO2 con
QTON:
27,7%

Emisiones con la bomba de calor QTON: 29,9 Tn CO_2 / año Emisiones con un caldera de Gas Natural: 41,4 Tn CO_2 / año

Energía eléctrica anual consumida: 46.149 kWh energía térmica anual producida: 192.642 kWh

CALDERA DE GASÓLEO:

Precio 0,15 €/kWhe Precio 0,089 €/kWh gasóleo

Rend. caldera: 85 %

Costo anual caldera de gasóleo: 20.171 € Costo anual bomba de calor QTON: 6.922€

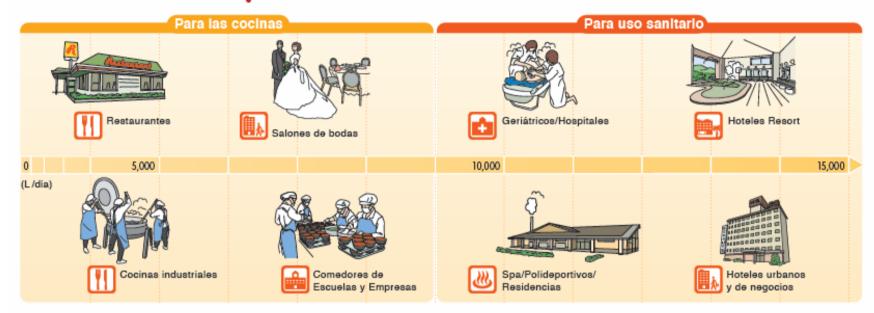
Amortización: 1,7 años

Energía eléctrica anual consumida: 46.149 kWh energía térmica anual producida: 192.642 kWh

CALENTADOR ELÉCTRICO:

Precio 0,15 €/kWhe

Costo anual calentador eléctrico: 28.896 € Costo anual bomba de calor QTON: 6.922 €



Amortización en el primer año

Aplicaciones recomendables

Nombre de la instalación: Seiseikai Medical Corporation Yakata Tower for Elderly

Nombre de la instalación: Rokushinkai Social Welfare Corporatio Complejo Rikyu Senriyama Welfare Facillity

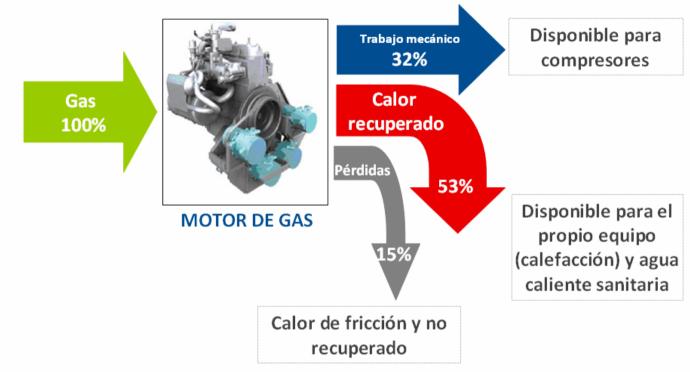
Nombre de la instalación: Hotel Hokkai, Hotel Toya Kanko, Hotel Grand Toya, Hotel Toya Sansui

PRINCIPALES VENTAJAS

- Ahorro energético y económico
- Posibilidad de instalación en intemperie o en sala de máquinas
 - Mantenimiento prácticamente nulo
- Posibilidad de acumulación nocturna por tarifa reducida
 - No necesaria salida de humos

- Mayor seguridad al no existir acumulación de combustible (gasóleo) o acometida de gas
 - Elevado rendimiento hasta -10°C
 - Bajo nivel sonoro (58 dB)
 - Posibilidad de integración en sistema climatización VRF
 Mitsubishi Heavy Industries

GHP Bomba de calor alimentada por gas



1.- ¿QUÉ ES UN SISTEMA GHP?

- El sistema GHP (Gas Heat Pump) es un sistema de climatización con bomba de calor que funciona con un compresor a gas en lugar de utilizar electricidad
- La energía térmica es recuperada por:
 - ✓ Agua de refrigeración del motor
 - ✓ Agua calentada por los gases de escape
- El calor recuperado por el motor se utiliza para:
 - ✓ Mantener la capacidad de calefacción constante a bajas temperaturas
 - ✓ Producir Agua Caliente Sanitaria

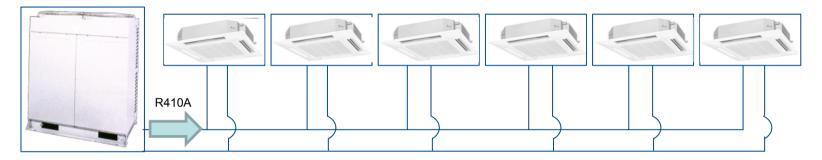
member of TOYOTA group

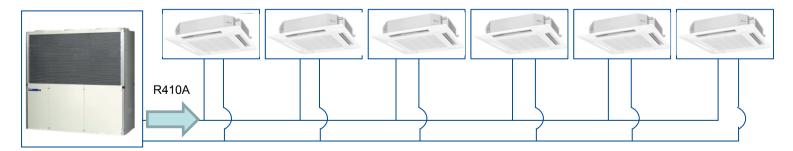
2.- GHP: APLICACIONES

•RESIDENCIAL: Urbanizaciones, edificios de apartamentos

•COMERCIAL: Hoteles, restaurantes...

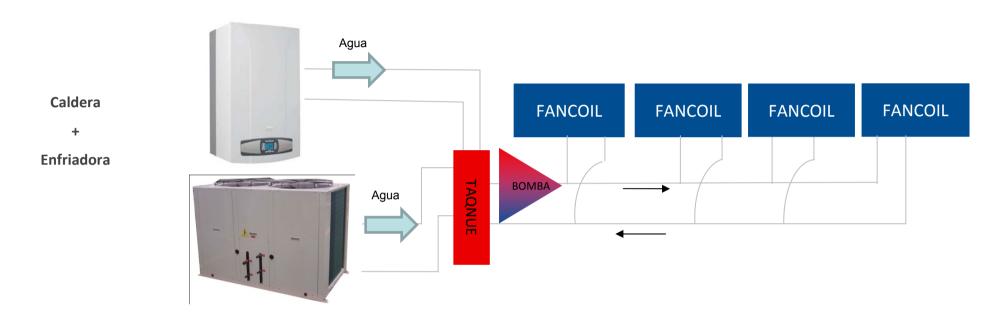
•SANITARIO: Hospitales, clínicas

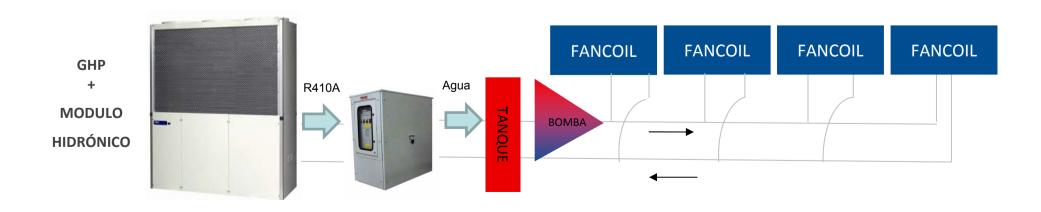

•CENTROS DEPORTIVOS: Polideportivos, gimnasios, piscinas, spa



3. -TIPOS SISTEMAS GHP: EXPANSIÓN DIRECTA

VRF


GHP



4. -TIPOS SISTEMAS GHP: SISTEMAS POR AGUA

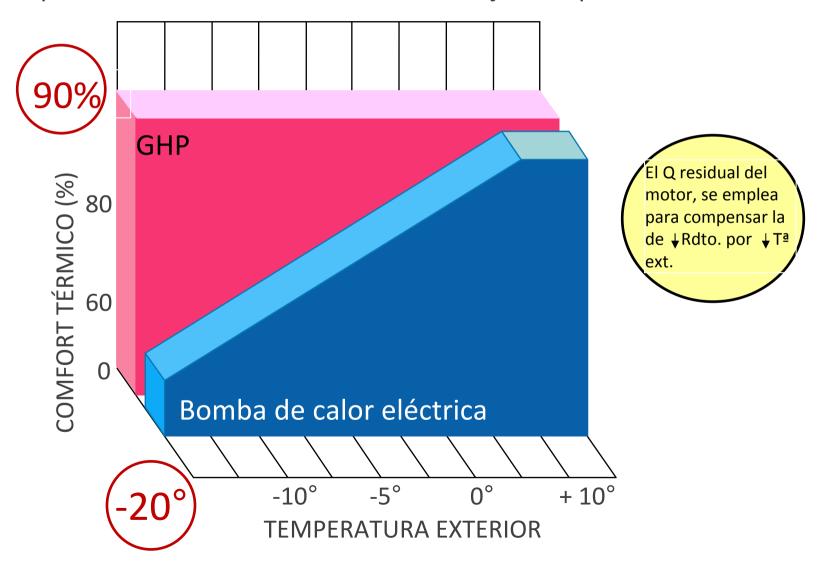
5.- GAMA GHP: UNIDADES EXTERIORES

8-10-13 HP 22,4 - 28 - 35,5 kW

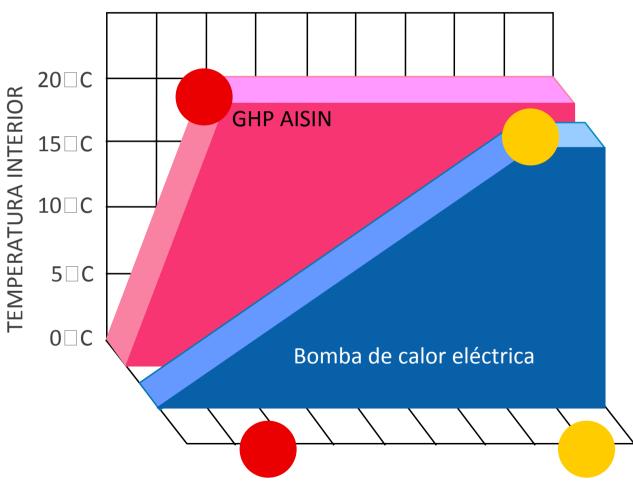
16-20-25 HP 45 – 56 – 71 kW

Posibilidad de combinar dos módulo. Máxima potencia por circuito: 142 kW

6. - GHP EXPANSIÓN DIRECTA: GAMA DE UNIDADES INTERIORES


Cassette de 2 vías
Split suelo
Split pared
Split Cassette 4 vías (600x600)
Split Cassette 4 vías Round Flow
Split techo

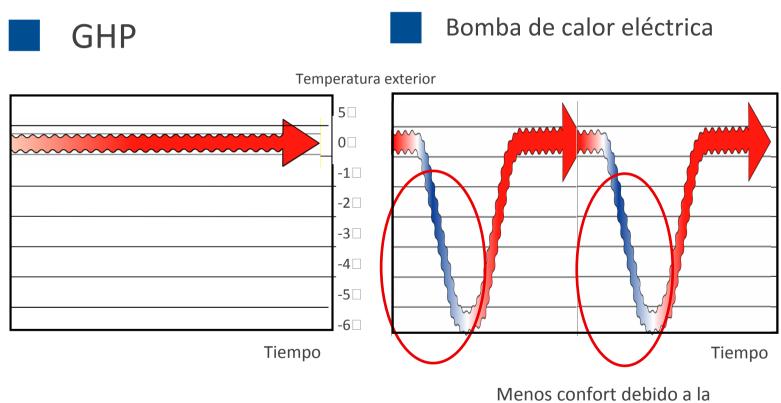
7. – GHP AISIN: VENTAJAS. Confort térmico


Capacidad constante en calefacción a bajas temperaturas

Confort térmico

La temperatura de consigna ambiente se alcanzada rápidamente

TIEMPO (misma carga térmica)



Confort térmico

Ciclos limitados de descongelación

Menos confort debido a la inversión de ciclo

8.- COMPARATIVA FRENTE A OTROS SISTEMAS

GHP vs. GEOTERMIA

GHP AISIN

- Bajos costes de instalación
- Mínimo espacio de la unidad exterior
- Bajo consumo eléctrico
- DX o Aire-Agua

Geotermia

- Altos costes de perforación
- Necesidad de amplio espacio
- Mismo consumo eléctrico que EHP
- Sólo agua

8.- COMPARATIVA FRENTE A OTROS SISTEMAS

GHP AISIN vs. ENFRIADORA

GHP AISIN

- Bajo consumo eléctrico
- •Alto COP en calefacción a bajas temperaturas
- Raro y corto tiempo de descongelación
- No necesita cuarto de caldera

ENFRIADORA

- Alto consumo eléctrico
- Bajo COP en calefacción a bajas temperaturas
- Ciclos habituales de descongelación
- En grandes potencias, necesidad de centro de transformación

9.- POSIBILIDAD DE SUSTITUCION DE LOS PANELES SOLARES

La contribución mínima de energía solar para ACS, exigida por el CTE puede ser sustituida por otras energías alternativa procedentes de sistemas de cogeneración **o fuentes de energía residuales.**

Este es el caso del calor recuperado en el equipo GHP

Cubriremos un % de la demanda de ACS con el calor sobrante del motor, para sustitución en muchos casos de paneles solares

10.- CASO PRÁCTICO

Sustitución sistema actual: enfriadoras de R22 + caldera de calefacción

Ciudad: Valencia

Tipo de instalación: Hospital

Estimación de las cargas parciales:

% Carga	% del tiemp trabaj a carga parcial
------------	--

100%	4,0%
90%	9,0%
80%	15,0%
70%	19,0%
60%	21,0%
50%	19,0%
40%	9,0%
30%	4,0%

TOT. 100,0%

Horas de funcionamiento: 24h/365 días año

Numero horas modo calor: 3.624 h Número horas modo frío: 5.136 h

- Potencia de las enfriadoras: 600 kW, EER = 2,75
- Potencia de la calderas: 600 kW, Rend = 90 %
- Precio del gas: 0,05 Euros/kWh
- Precio energía eléctrica: 0,15 Euros/kWh

TOYOTA group

10.- CASO PRÁCTICO

Datos de consumos actuales:

ELECTRICIDAD: 108.485 €

Consumo anual de las enfriadoras: 723.236 kWh

GAS: 77.674 €

Consumo anual caldera de calefacción: 1.553.488 kWh

Costo anual mantenimiento sistema actual: 800 €

Emisiones de CO₂: 786 Tn

Total: 186.959 €

Datos de consumos con GHP:

ELECTRICIDAD: 23.431€

Consumo anual de los eq. GHP: 156.206 kWh (*) (*) Este consumo incluye la bomba del kit hidráulico

GAS: 106.681 €

Consumo anual equipo GHP: 2.133.620 kWh

AHORRO GAS: - 34.636 €

Producción de ACS gratuita: 692.723 Kwh

Costo anual mantenimiento sistema GHP: 10.000 €

Emisiones de CO₂: 395 Tn

Total: 105.476 €

AHORRO ECONÓMICO 81.483 €/año

AHORRO
EMISIONES
CO2 con
GHP:
50%

MCHP Equipos de microcogeneración

AISIN MCHP: MICROCOGENERACIÓN 1.- PRINCIPALES VENTAJAS

- 1. Producción SIMULTÁNEA de electricidad y calefacción
- 2. Importante ahorro energético
- 3. Tecnología rentable para las sistemas de calefacción centralizada
- 4. La electricidad y el calor producidos son consumidos por el usuario final
- 5. Incremento de la eficiencia total
- **6. Ahorro del 34% de la Energía Primaria** en comparación con la producción por separado
- 7. Ahorro del 35% en los costes de funcionamiento
- 8. No hay pérdidas en la distribución de calefacción y electricidad
- **9.** Reducción de las emisiones de CO₂: 2,03 kg de CO₂ por cada hora de funcionamiento

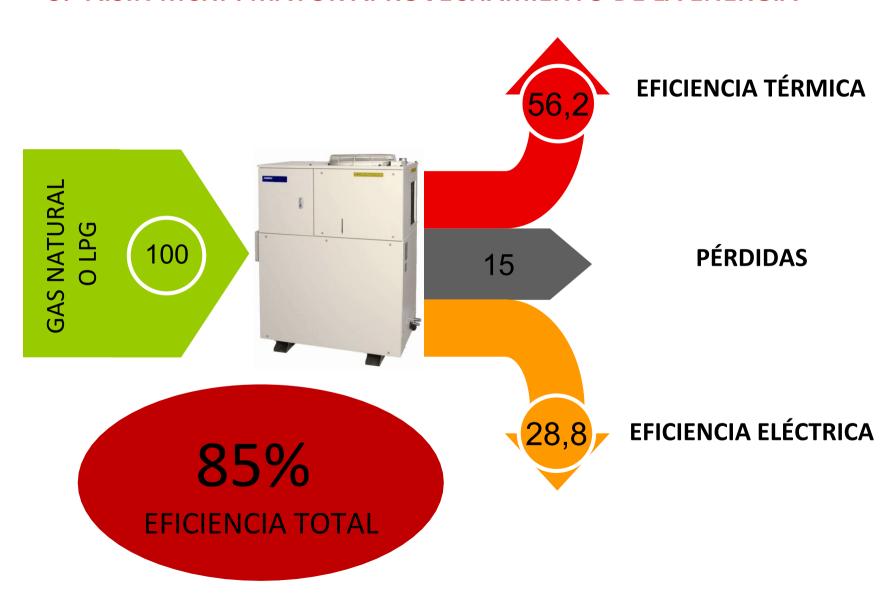
2.- MCHP: APLICACIONES

•RESIDENCIAL: Urbanizaciones, edificios de apartamentos

•COMERCIAL: Hoteles, restaurantes...

•SANITARIO: Hospitales, clínicas

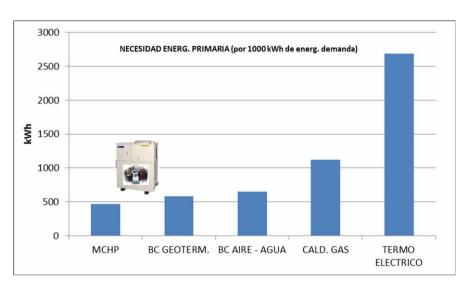
•CENTROS DEPORTIVOS: Polideportivos, gimnasios, piscinas, spa

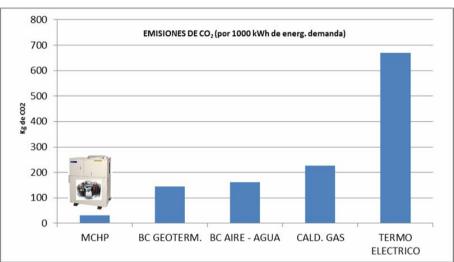

Todas las aplicaciones con estas energías requieren:

•Necesidades térmicas: 45.000 – 60.000 kWht (en cualquier caso, un 70% menos del total requerido)

•Necesidades de electricidad/producción: más de 22.500 – 30.000 kWhe

3.- AISIN MCHP: MAYOR APROVECHAMIENTO DE LA ENERGÍA





4.- MCHP: comparada con otras tecnologías

Menos necesidades de energía primaria

Menos emisiones de CO₂

5.- AISIN MCHP: PRINCIPALES CARACTERÍSTICAS

Suministro de Gas Natural o LPG

Bajo consumo 20,8 kW

Bajo nivel sonoro 54 dB(A)

Bajas emisiones Cumple con los estándares actuales

Posibilidad montaje en intemperie

Mantenimiento periódico cada 10.000 horas

Cambio de aceite cada 30.000 horas

6.- APLICACIONES EQUIPOS MCHP:

Sustitución de los paneles solares por MCHP

Según **documento básico HE 4** – Contribución solar mínima de agua caliente sanitaria:

Punto 2, del apartado 1.1. Ambito de aplicación:

"La contribución solar mínima determinada en aplicación de la exigencia básica que se desarrolla en Sección, podrá disminuirse

Justificadamente en los siguientes casos:

a)Cuando se cubra este aporte energético de agua caliente sanitaria **mediante el aprovechamiento de energías renovables,**

procesos de cogeneración o fuentes de energía residuales procedentes de la instalación de recuperadores de calor ajenos a

la propia generación de calor del edificio.

7.- EJEMPLO DE PLAN DE MANTENIMIENTO MCHP:

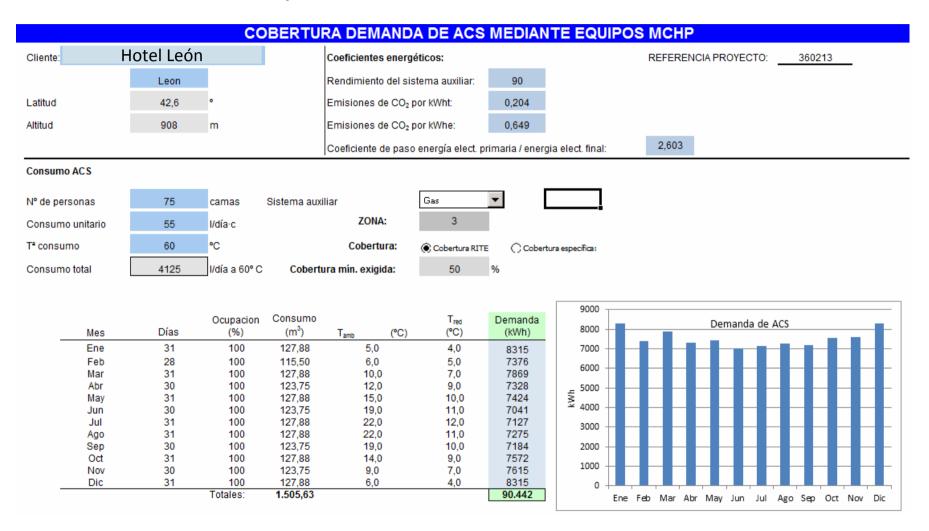
		PRECIO	OS 2013 PARA EL MANTENIMIENTO ORDINARIO DE LO EQUIPO DE MICROCOGENERACION (MCHP)
A las 10.000 horas	1355	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías
A las 20.000 horas	1375	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías y regulador
A las 30.000 horas	1722	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías, filtros de drenaje y juntas
A las 40.000 horas	1375	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías y regulador
A las 50.000 horas	1355	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías
A las 60.000 horas	1722	Euros	Cambio de aceite, filtros de aire, filtro de aceite, bujías, filtros de drenaje y juntas

AISIN

Nota:

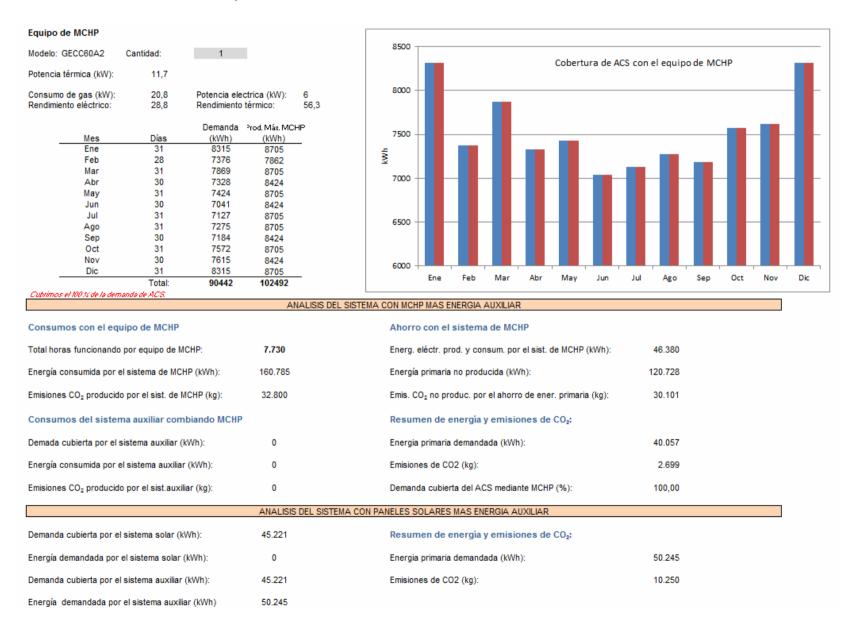
Estos precios incluyen los materiales necesarios, mano de obra, desplazamiento y dietas.

Estos precios no incluyen IVA.

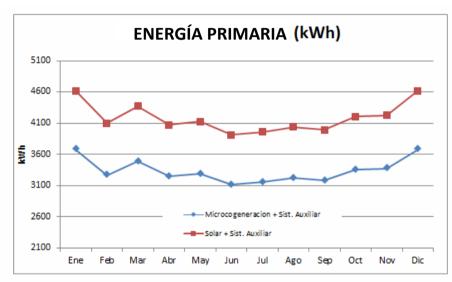

Estos precios son para trabajos realizados de Lunes a Viernes de 8:30 a 18:00. Si los trabamos de mantenimiento se deben de realizar en otros horarios y/o días festivos los nuevos precios deberán consultarlos con Lumelco.

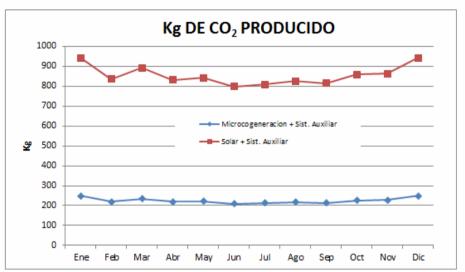
member of TOYOTA group

8.1.- CASO PRÁCTICO, SUSTITUCIÓN DE PANELES SOLARES POR MCHP



8.1.- CASO PRÁCTICO, SUSTITUCIÓN DE PANELES SOLARES POR MCHP





8.1.- CASO PRÁCTICO, SUSTITUCIÓN DE PANELES SOLARES POR MCHP

SISTEMA SOLAR + ENERGÍA AUXILIAR

Necesidades energéticas anuales (kWh): Producción de CO₂ (kg):

50.245	40.057	20,28
10.250	2.699	73,67

CON EQUIPO DE MICROCOGENERACION (MCHP) + SISTEMA AUXILIAR

AHORRO EMISIONES CO2 con GHP: 74%

8.2.- CASO PRÁCTICO: EQUIPO MCHP PARA AUTOCONSUMO

		DEM	ANDA D	E ACS MEDIA	NTE EQUI	POS MC	HP - AUTO	CONSUMO	
Cliente: EJE	MPLO MCHP - HO	TEL		Coeficientes energé	ticos:				
	Madrid			Rendimiento del siste	ma auxiliar:	90	Precio Eu	ro/kWh de electricidad:	0,18
				Emisiones de CO ₂ po	r kWht:	0,204	Precio Eu	ro/kWh de gas:	0,054
				Emisiones de CO ₂ po	r kWhe:	0,649	Precio ma	antenimiento Euro/kWh:	0,016
				Coeficiente de paso e	nergía elect. prima	aria / energia e	elect. final:	2,603	
Consumo ACS				Horario para el cons	sumo eléctrico:				
Nº de personas	220	camas		Lune a Jueves	24		Total horas año:	8760	
Consumo unitario	55	I/día-c		Viernes	24		Media horas día:	24,00	
T ^a consumo	60	°C		Sabados	24				
Consumo total	12100	I/día a 60º C		Domingos	24				
Energía auxiliar:	Caldera de gas		Consumo		т.		24000	•	
Mes	Días	Ocupacion (%)	(m ³)	T _{amb} (°C)	T _{red} (°C)	Demanda (kWh)	23000 —	Dem	anda de ACS ——————
Ene	31	100	375,10	6,0	6,0	23519	22000 —		
Feb Mar Abr	28 31 30	100 100 100	338,80 375,10 363,00	8,0 11,0 13,0	7,0 9,0 11,0	20849 22212 20653	21000 — §	Н.,	
May Jun	31 30	100 100	375,10 363,00	18,0 23,0	12,0 13,0	20906 19810	≥ 20000 —	$\mathbf{H}\mathbf{H}\mathbf{H}$	
Jul	31	100	375,10	28,0	14,0	20035	19000 —		
Ago Sep	31 30	100 100	375,10 363,00	26,0 21,0	13,0 12,0	20470 20231	18000		
Oct Nov	31 30	100 100	375,10 363,00	15,0 11,0	11,0 9,0	21341 21496	18000 —		
Dic	31	100	375,10	7,0	6,0	23519	17000 +	ne Feb Mar Abr May	Jun Jul Ago Sep Oct Nov Dic
		Totales:	4.416,50			255.040		THE TED IVIOL ADT IVION	Jan Jan Ago Sep Oct 1909 Dit

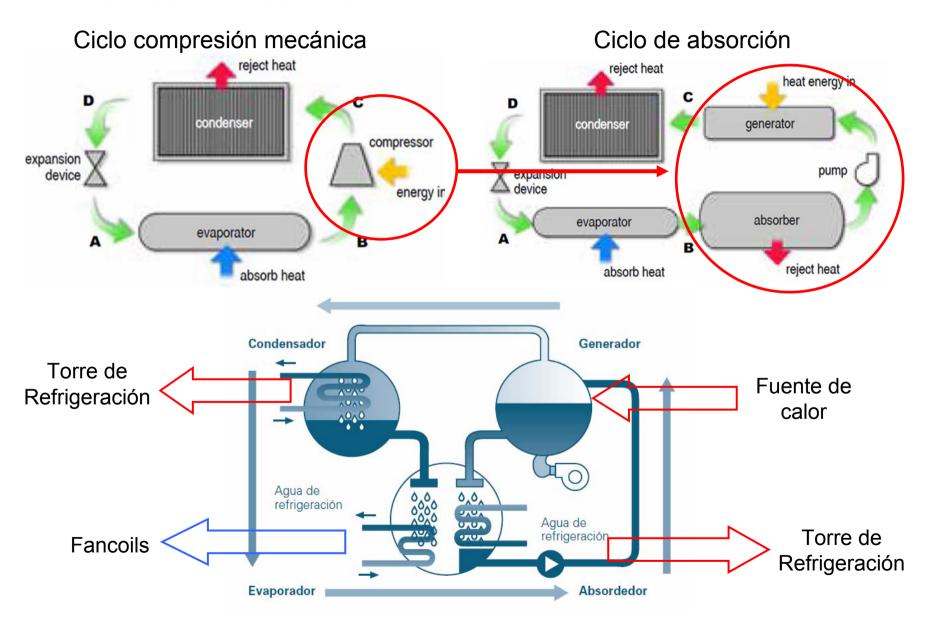
8.2.- CASO PRÁCTICO: EQUIPO MCHP PARA AUTOCONSUMO

Equipo de MCHP																		
Modelo: GECC60A2																		
Potencia térmica (kW):	11,7	Cantidad:	1		25000													
Potencia electrica (kW)	6	Rendimiento	eléctrico:	28,8														
Consumo de gas (kW):	20,8	Rendimiento	térmico:	56,3	20000			L	į.		_						L	
Precio unidad (Euros):	22000	Costos instal	lacion:	1500														
			Prod. Máx.	Prod. Por consumo	15000													
Mes	Días	(kWh)	(kWh)	electrico (kWh)	13000													■ DEMANDA ACS
Ene	31	23519	8705	8705														
Feb	28	20849	7862	7862														■ MCHP producción máxima
Mar	31	22212	8705	8705	10000	+	-	-	-	-	_	-	-	-	-		-	■ MCHP por horario
Abr	30	20653	8424	8424					ш					ь.		ь.		
May	31	20906	8705	8705														
Jun	30	19810	8424	8424														
Jul	31	20035	8705	8705	5000	+			-	-	-						-	
Ago	31	20470	8705	8705														
Sep	30	20231	8424	8424														
Oct	31	21341	8705	8705														
Nov	30	21496	8424	8424	0							,						
Dic	31	23519	8705	8705		Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	
	Total:	255040	102492	102492														

member of **TOYOTA** group

8.2.- CASO PRÁCTICO: EQUIPO MCHP PARA AUTOCONSUMO

Limite de horas anuales de funcionamiento por equipo:	8760
Límite de horas anuales totales:	8760
Energía anual para produción de ACS (kWh):	102492
Límite máximo de energía calorífica anual de ACS (kWł	255040
Energía vertida a la red (kWh):	0
BENEFICIOS GENERADOS:	
Costes eléctricos anuales evitados (Euros):	9461
Pontencia consumida por la instalación (kW):	6
Energía calorífica en producción de ACS evitada (kWh)	113880
Costes de producción de ACS anuales evitados (Euros	6150
Suma de beneficios anuales (Euros):	15610
COSTES:	
Costo de consumo de gas anual (Euros):	9839
Costos por mantenimiento anual (Euros):	841
Suma de costes (Euros):	10680
TOTAL BENEFICIOS ANUALES (EUROS):	4930
TOTAL INVERSION (EUROS):	23500
AÑOS AMORTIZACION:	4,8


Enfriadoras por Absorción

1.- PROCESO DE ABSORCIÓN

2.- CLASIFICACIÓN DE LOS EQUIPOS POR ABSORCIÓN

-En función del número de efectos:

- * Simple efecto (equipos con un solo generador)
- * Doble efecto (equipos con dos generadores)
- * Triple efecto (equipos con tres generadores)

-En función del par refrigerante / absorbente:

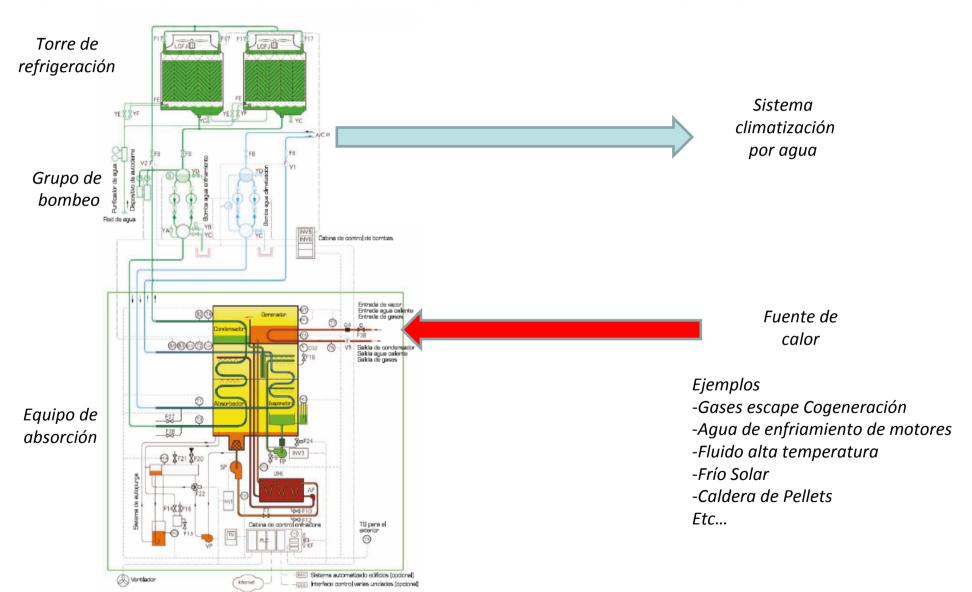
- * Agua / LiBr (refrigerante: agua; absorbente: Bromuro de Litio)
- * Amoniaco / agua (refrigerante; amoniaco; absorbente; agua)
- * Nitrato de Litio / agua (refrigerante: LINO₃ ; absorbente: agua)
- * Tiocianato sódico / agua (refrigerante: NaSCN; absorbente: agua)

-En función del sistema de condensación:

- * Condensadas por agua. Lleva asociada una torre de refrigeración
- * Condenada por aire. El fluido que provoca la condensación del refrigerante es aire

-En función de la fuente de calor:

- * Tipo directo o "llama" directa. El calor procede de productos de combustión. Se utiliza un quemador.
- * Tipo indirecto. Reciben el calor necesario a través de un fluido térmico: fuente residual de calor, instalación energía solar,...


FUENTE DE CALOR		SIMPLE EFECTO	DOBLE EFECTO
VADOD	Presión	0,1 MPa	0,8 MPa
VAPOR	Rendimiento	0,79	1,41
AGUA CALIENTE	Temperatura	98 ºC	180 º C
AGOA CALIENTE	Rendimiento	0,76	1,41
GASES DE ESCAPE	Temperatura	300 ºC	500 ºC
GASES DE ESCAI E	Rendimiento	0,79	1,41
QUEMADOR	Rendimiento	-	1,36
Zeemie en			
AGUA CALIENTE + GASES DE ESCAPE	Temperatura	-	98 º C / 500 ºC
	Rendimiento	-	1,41
	Tomonoratura		Vanar O S Maa
QUEMADOR + VAPOR	Temperatura	-	Vapor 0,8 Mpa
	Rendimiento	-	1,36 / 1,41
0.1151445.05 4.014 64.1151.75	Temperatura	-	Agua 180 ºC
QUEMADOR + AGUA CALIENTE	Rendimiento	-	1,36 / 1,41
QUEMADOR + GASES DE ESCAPE	Temperatura	-	Gases escape 500 ºC
QUEIVIADOR I GASES DE ESCAPE	Rendimiento	-	1,36 / 1,41
			Casas assana F00 0 C / Azuz 00
QUEMADOR + GASES DE ESCAPE + AGUA CALIENTE	Temperatura	-	Gases escape 500 º C / Agua 98 ºC
QUEINIADON + GASES DE ESCAPE + AGUA CALIENTE	Rendimiento	<u>-</u>	1,36 / 1,41
	Renumberio	-	1,30 / 1,41

Valores de rendimiento para las condiciones nominales. Para otras condiones de temperaturas y presiones, consultar manual

3.- COMPONENTES BÁSICOS DE UN SISTEMA DE ABSORCIÓN

4.- CASO PRÁCTICO. EQUIPOS DE ABSORCIÓN CON CALDERA DE BIOMASA

Rentabilidad equipo de Absorción de simple efecto alimentado por agua caliente procedente de una caldera de biomasa vs enfriadora eléctrica convencional.

Refrigeración para proceso industrial. Horas de funcionamiento al año: 5.760 h

COMPARATIVA ENFRIADORA DE AGUA Y ABSORCION MEDIANTE CALDERA DE ASTILLA

DATOS DE PARTIDA - MODO REFRIGERACION

EQUIPO DE ABSORCION (FUNCIONAMEINTO SOLO FRÍO)							
Producción frigorífica: 64 kW							
Consumo eléctrico (*):	5,2	kW					
Cosumo de gas modo frío:	0	m3/h					

^(*) No está inlcuido el consumo del grupo de bombeo.

Si está incluido el consumo de la ventiladores de la torre

CALDERA DE ASTILLAS							
Potencia necesaria:	98	kW					
Temperatura de agua (out/in):	90/80	°C					
Caudal de agua necesaria	8,5	m3/h					
Energía de la astilla	4,186	kW/kg					

ENFRIADORA							
Producción frigorífica:	65	kW					
EER	3	Kw					
Consumo eléctrico (*):	21,7	kW					
Cosumo de gas:	0	m3/h					

^(*) No está inlcuido el consumo del grupo de bombeo

ENERGIA CONSUMIDA ANUAL

Para 12 meses funcionando 16 h/dia:

5760

EQUIPO DE ABSORCION

Consumo eléctrico anual: 29952 kWh

Consumo de gas anual: 0 m3

Consumo de gas anual: 0 kWh

CALDERA DE ASTILLAS			
Consumo de Pellet anual	134849	Kg	

ENFRIADORA				
Consumo eléctrico:	124800	kWh		

4.- CASO PRÁCTICO. EQUIPOS DE ABSORCIÓN CON CALDERA DE BIOMASA

PRECIO DE LA ENERGIA

Precio energía eléctrica:	0,16	Euros/kWh
		Euros/kWh
Precio de la astilla	0,058	Euros/kg

(*) En este caso el equipo de absorción no se alimenta por gas

EQUIPO DE ABSORCION			
Gasto eléctrico: 4792 Euros			
Gasto de gas:	0	Euros	
Gastos de astilla	7821		
Total:	12614	Euros	

Ahorro cons. energia (Euros): 7.354 anual Ahorro (%): 37

Eulos

AHORRO ECONÓMICO

7.354

€/año

AHORRO ENERGÉTICO

37%

ANALISIS DE LOS PRECIOS

Gasto:

Precio eq. Absorción: Precio torres de refrigeración: Grupo de bombeo: Instalación:	48700 0 1500 3000	Euros Euros Euros Euros	Precio enfriadora aire/agua: Grupo de bombeo: Instación:	20000 1500 3000 0	Euros Euros Euros
Total precio:	53200	Euros	Total precio:	24500	Euros

AMORTIZACIONES

Ahorro anual gracias al equipo de absorción (Euros): 7354

Años para amortización sobrecosto: 3,9

COMPARATIVAS RATIOS DE GASTOS FRENTE A PORDUCCIÓN DE kW DE FRIO PRODUCIDO

ENFRIADORA

19968

Euros

Utilización de caldera de astilla para producir frío:	0,0342	Euros/kwf
	_	
Utilizando de enfriadora para producir frío:	0,0533	Euros/kwf
Ahorro de la astilla frente a la enfriadora:	35,8	% de ahorro

INVERSIÓN ESTIMADA 53.200€

AMORTIZACIÓN **3,9 AÑOS**



Sistemas de captación

ST3500

DF100 - 10/20/30 HP200/250 - 10/20/30

Captadores Tubo de Vacío

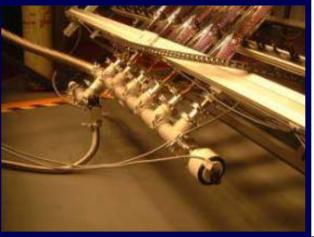
DF100 - 10/20/30 HP200/250 - 10/20/30

Diferencias fundamentales

Tecnología de vacío aplicada a colectores de solar térmica

Calidad

Rendimiento


Funcionalidad

Simulador Solar

Test de sock térmico

Test en instalación real

Test carga de nieve

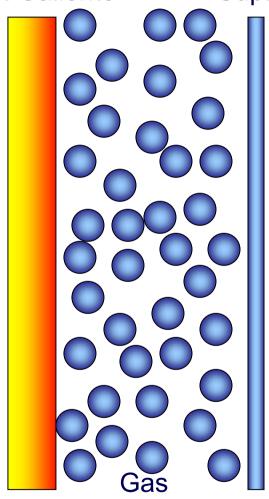
Certificado ISO9001:2000

Calidad

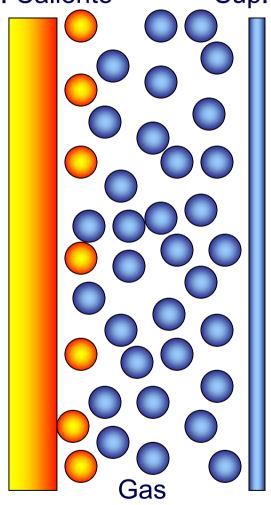
Rendimiento

Funcionabilidad

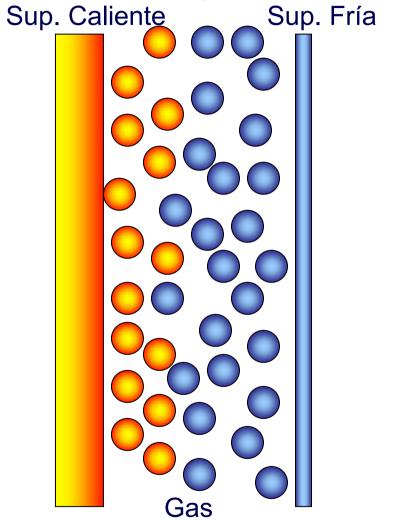
¿Por qué el nivel de vacío dentro del tubo es < 1 x 10⁻⁵ mbar ?

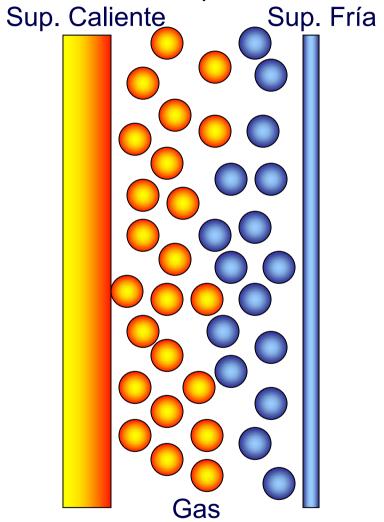

Para proveer de aislamiento térmico

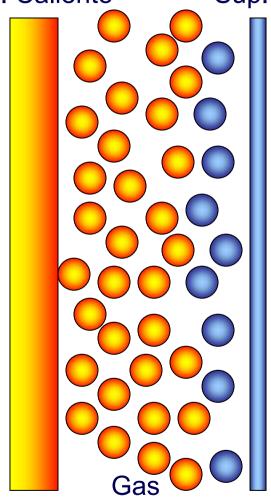
Porque el VACÍO es el mejor aislante conocido

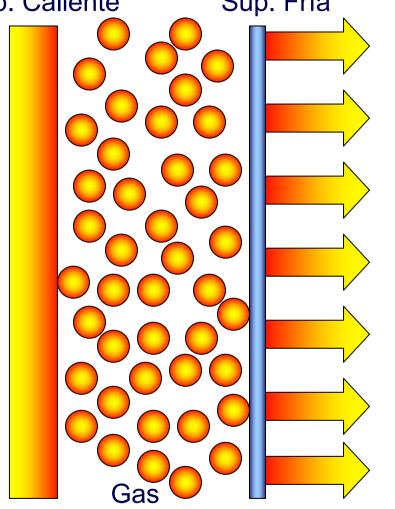

Para minimizar las pérdidas térmicas

Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría Pérdidas por radiación (mínimas) Alto gradiente térmico

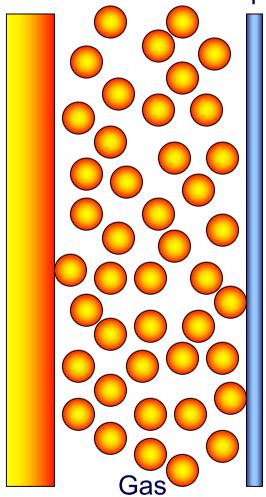

Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría


Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría


Pérdidas térmicas : Colector plano – Presión = 1013 mbar


Pérdidas térmicas : Colector plano – Presión = 1013 mbar

Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría


Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría

Pérdidas por conducción y convección

Pérdidas significativas al ambiente

Pérdidas térmicas : Colector plano – Presión = 1013 mbar Sup. Caliente Sup. Fría

Pérdidas significativas por Convección

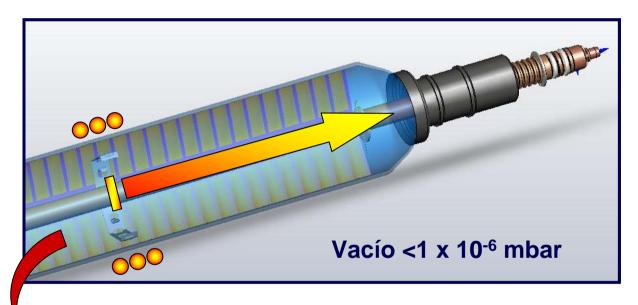
Pérdidas significativas al ambiente por Conducción

Pérdidas mínimas al ambiente por Radiación

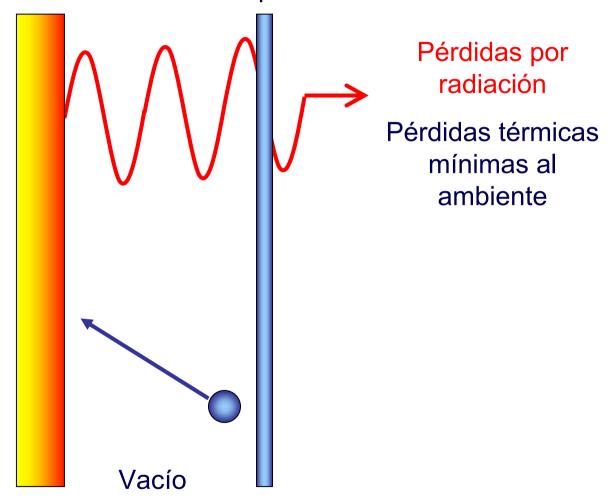
Generando el vacío

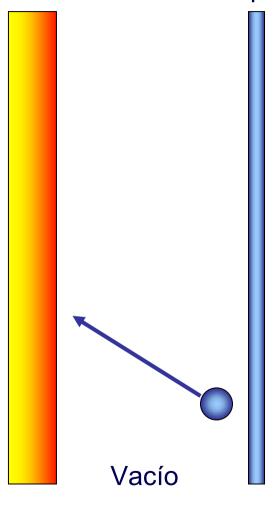
Vacío a 1 x 10⁻⁵ mbar

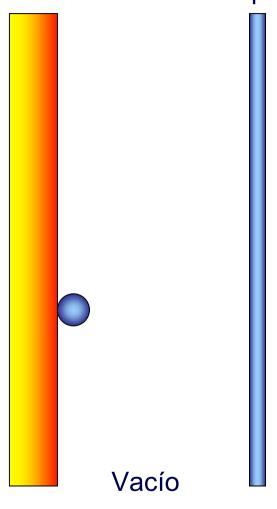
Indicador de vacío en el tubo

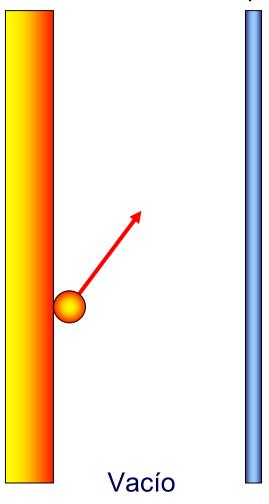

Cierre final del tubo

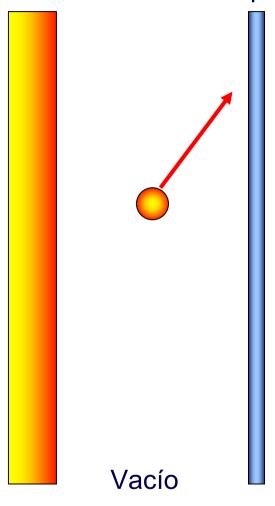
Manteniendo el vacío

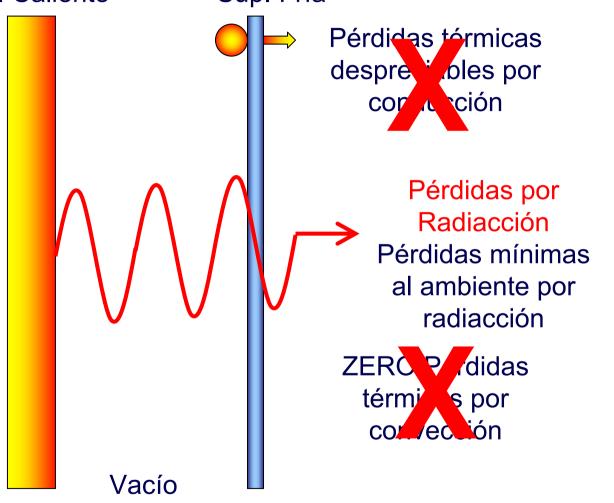

~20-Años de vida


Captador de Bario activo


Mantiene < 10⁻⁶ mbar




Vacío <1 x 10⁻⁵ mbar



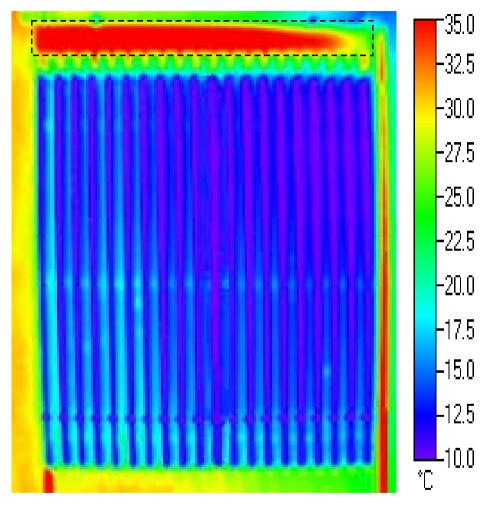
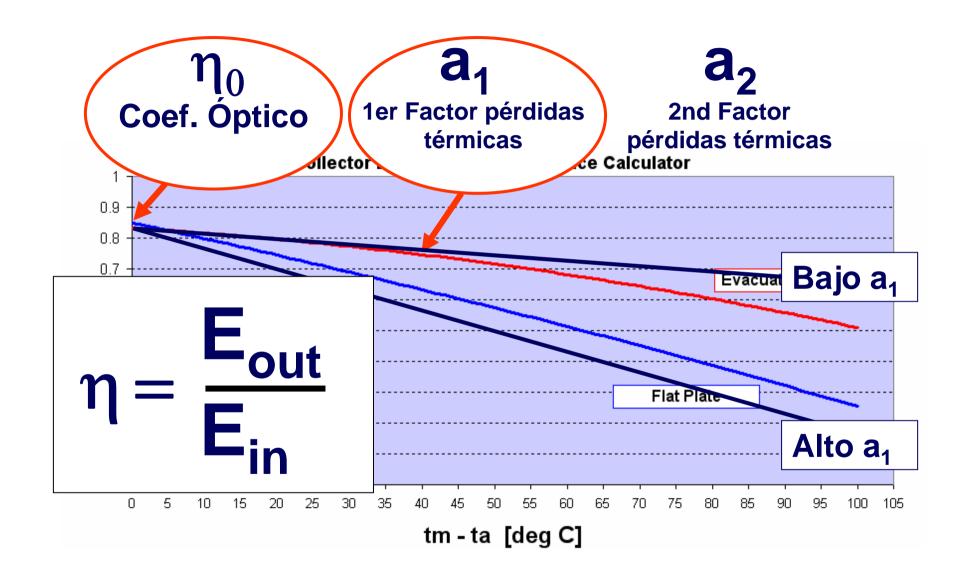
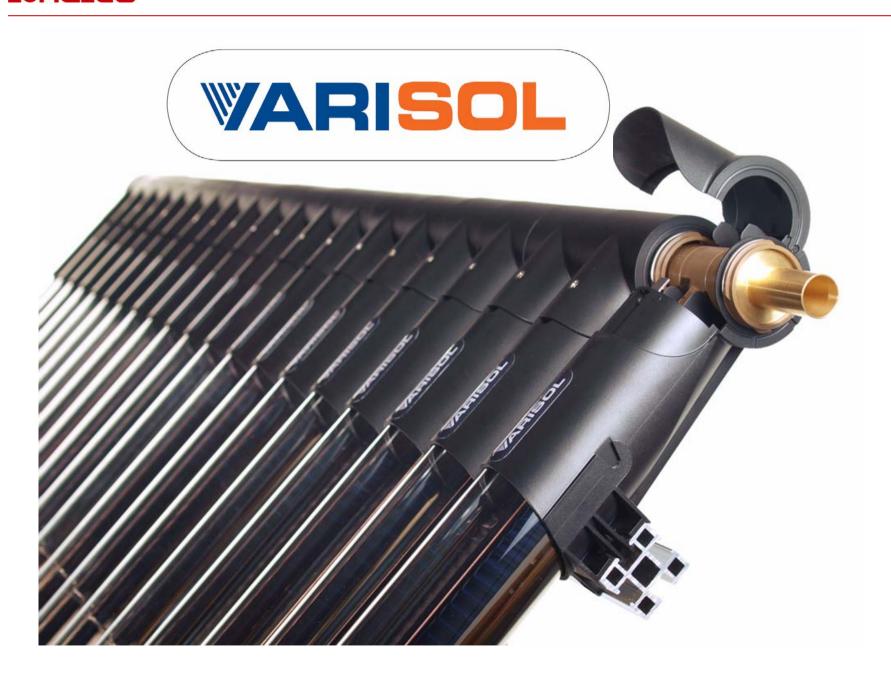




Imagen térmica de un colector de tubos de vacío



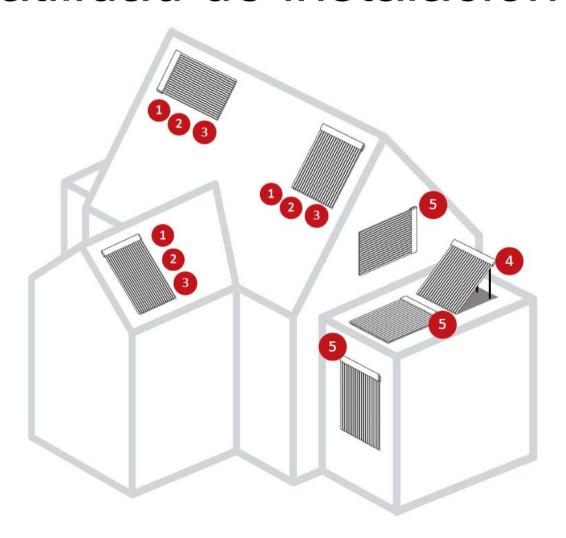
Calidad

Rendimiento

Funcionabilidad

Es el primer colector del Mundo Completamente Modular Colector solar de Tubo de Vacío

Sistema inverter de solar


Producción = necesidades

- Necesito 9 tubos → Pongo 9 tubos
- Necesito 23 tubos → Pongo 23 tubos
- El colector se ajusta exactamente a las necesidades
- Cómodo transporte
- Alto rendimiento: $\mu_0 = 0.783$; $a_1 = 1.061$ W/m²·K; $a_2 = 0.023$ W/m²·K²

Versatilidad de instalación

Ventajas

Modular – No es necesario el uso de grúas para la instalación

Plug & Play – Se pueden instalar sin el uso de herramientas

<u>Fácil instalación</u> – Kits de tejado premontados

<u>Rendimiento</u> – Alta eficiencia de los colectores hasta del 83% basado en la superficie absorbedora

<u>Calidad</u> – Producto y diseño 100% Europeo

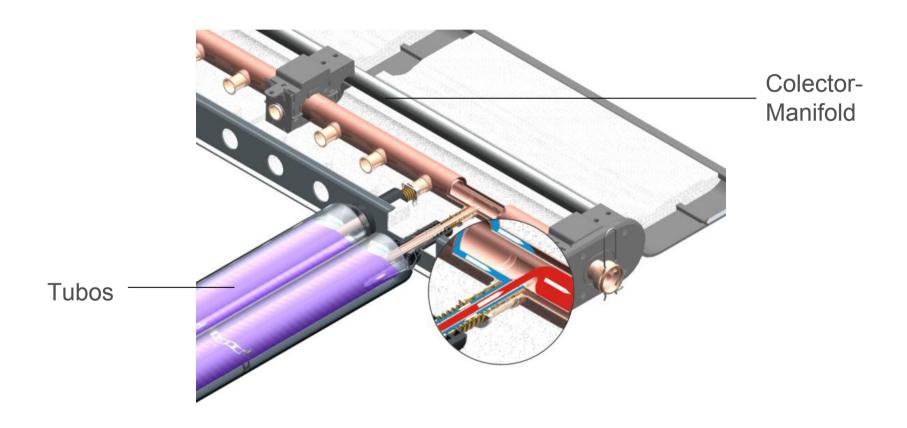
International Forum

Design Award

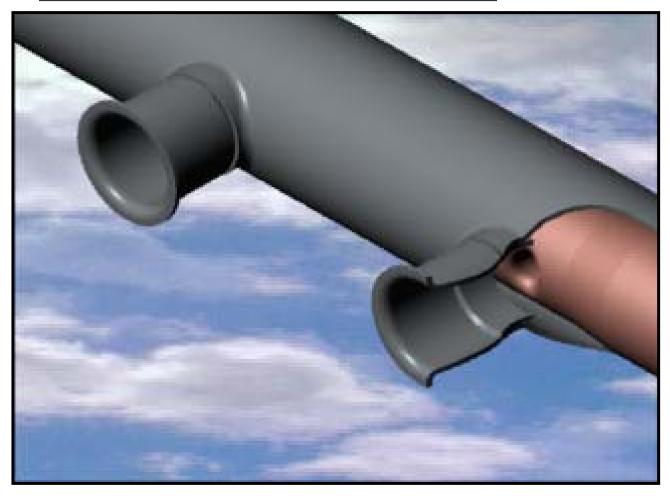
for

Excellence in Product Design

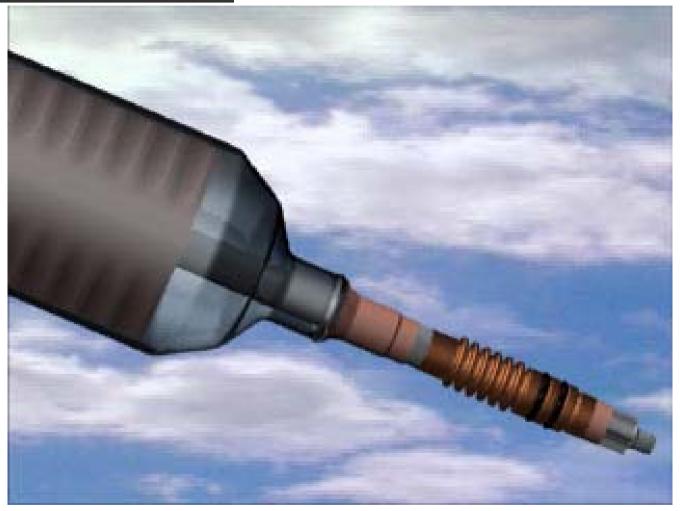
<u>Varisol Kingspan solar</u> - Ganador del premio al producto sostenible del año 2010



FUNCIONAMIENTO DEL TUBO VARISOL

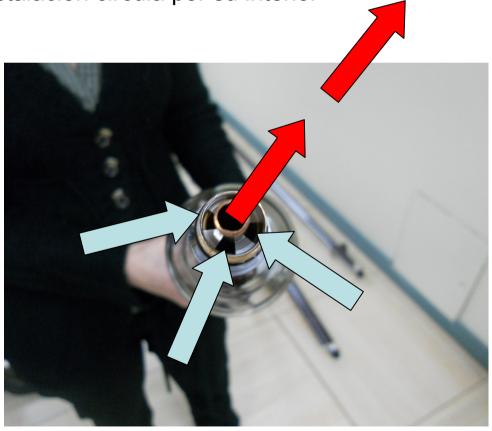


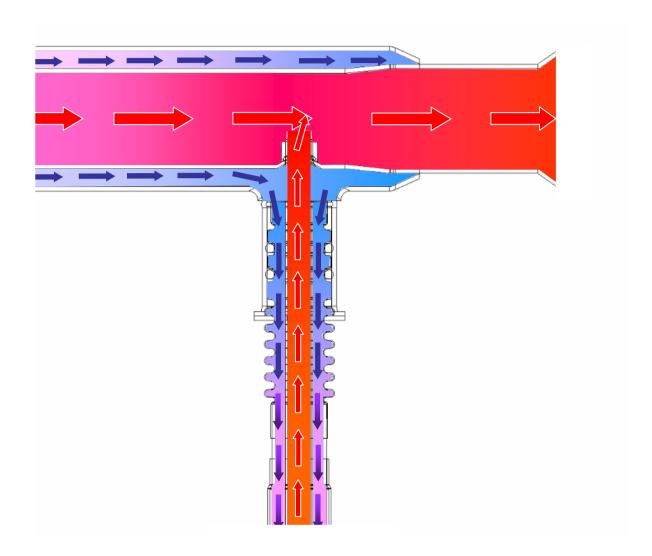
- Descripción del sistema FLUJO DIRECTO - DF100.

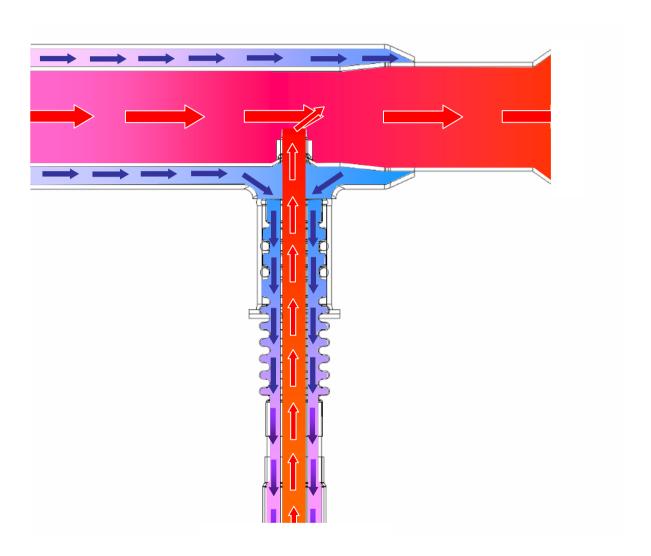


Detalle de la tubería del Manifold

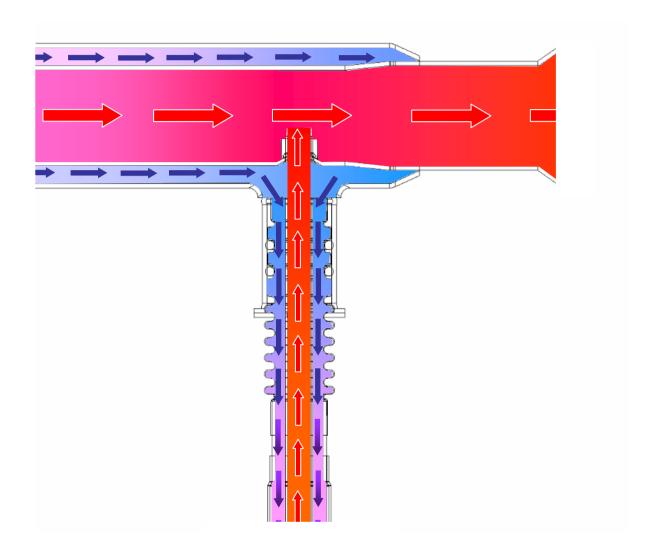
Conexión del tubo DF100

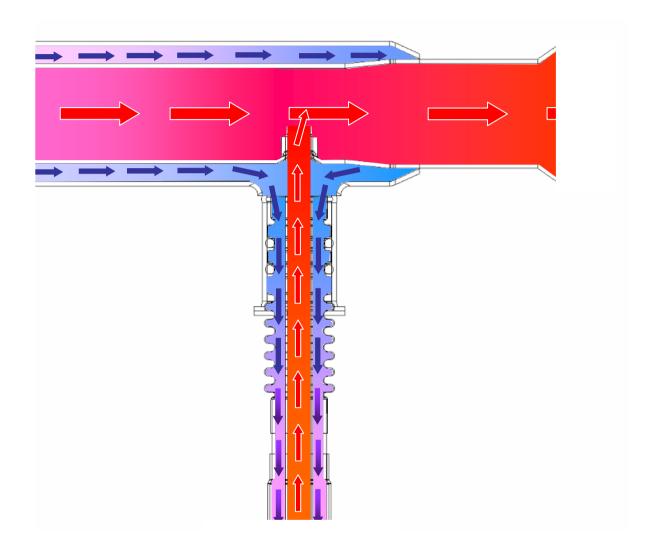


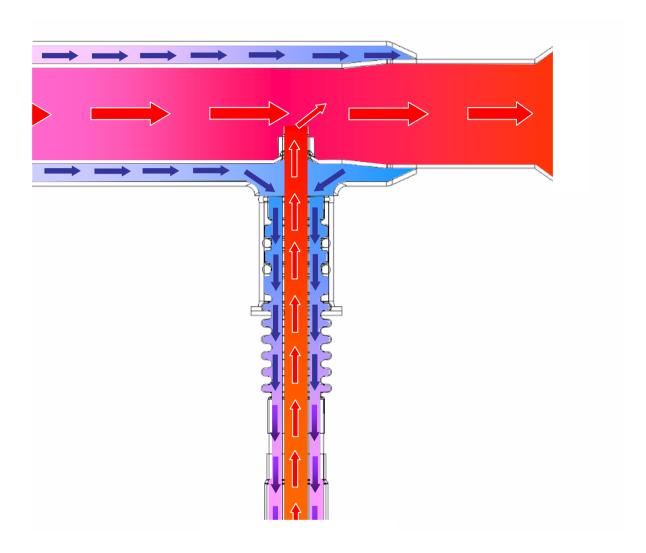

FUNCIONAMIENTO DE LOS TUBOS DE VACIO VARISOL

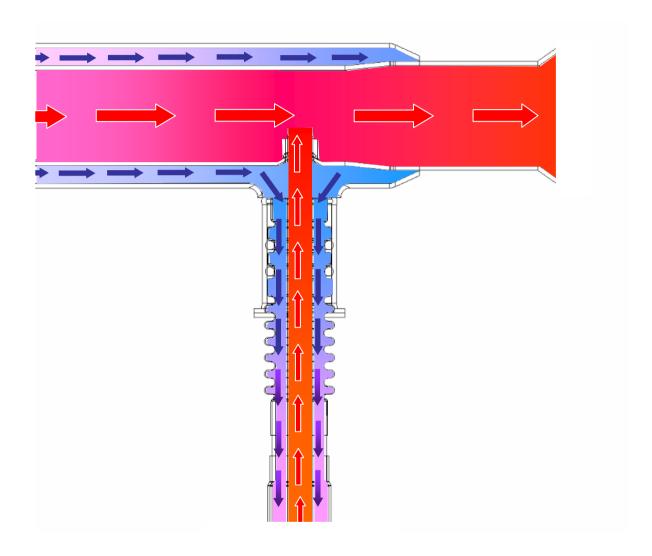

El tubo de vacío Varisol es un DIRECT FLOW

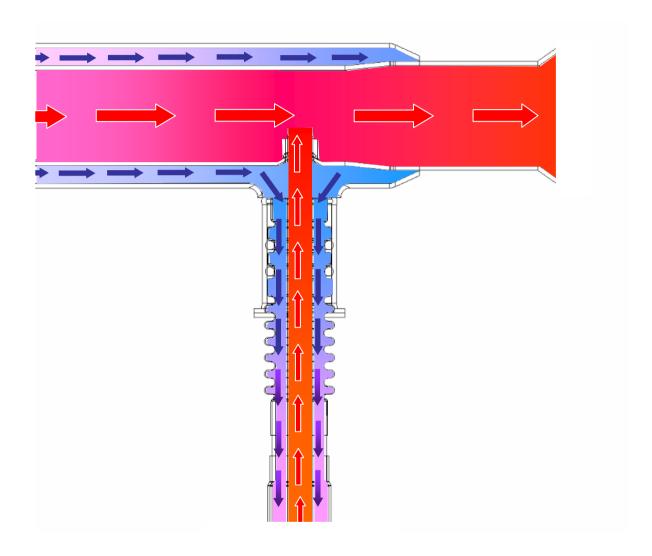
El fluido de la instalación circula por su interior

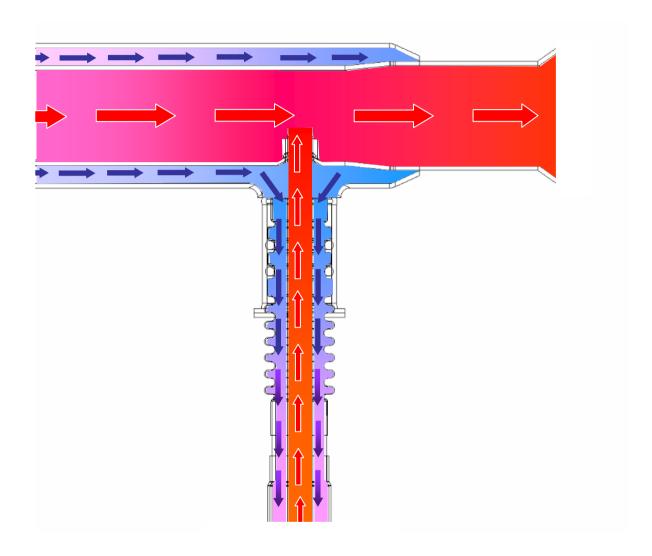


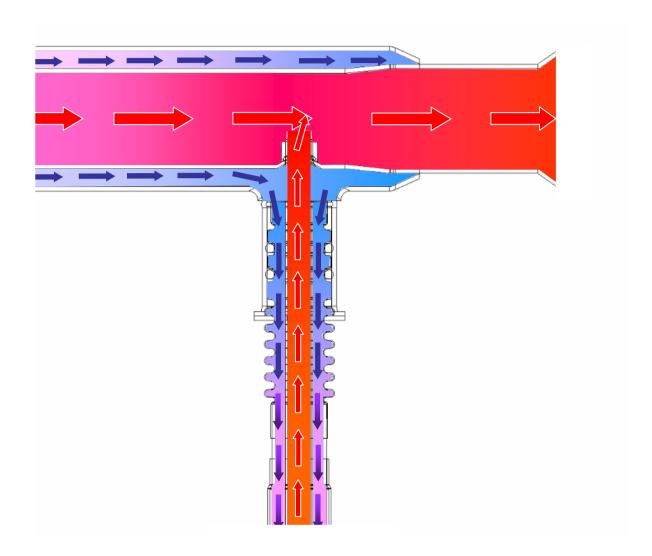


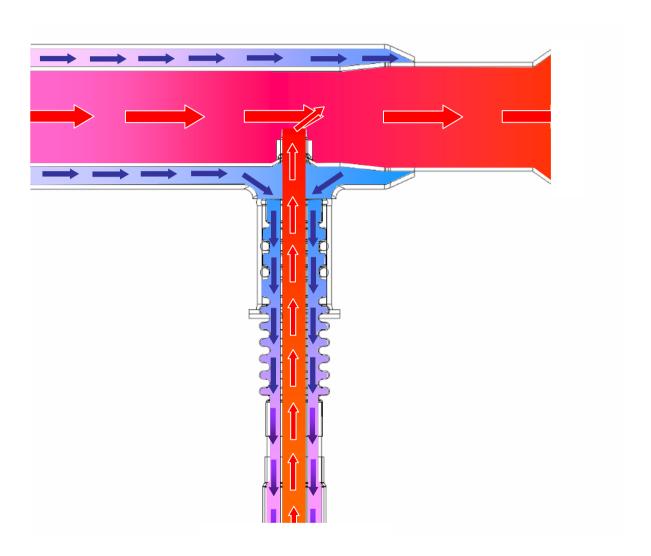


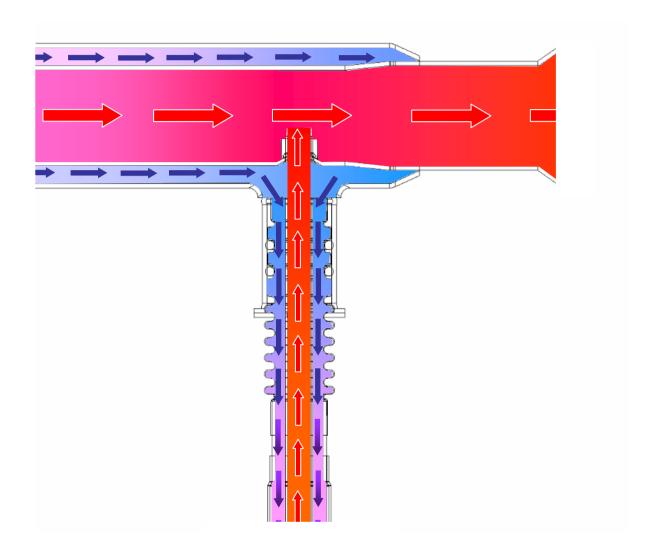


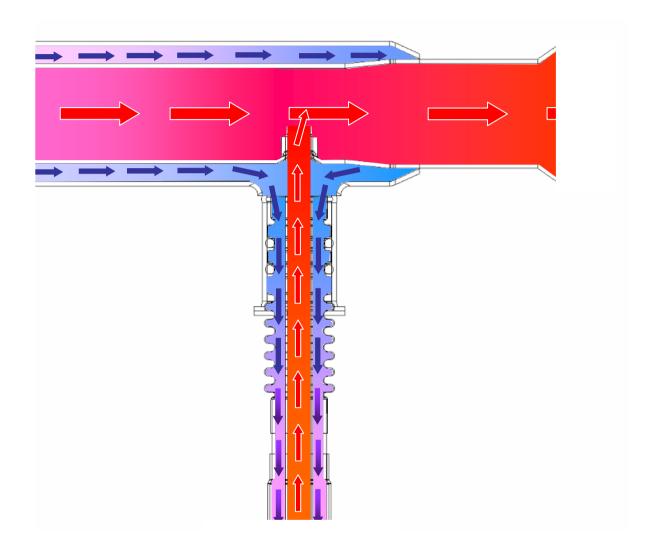


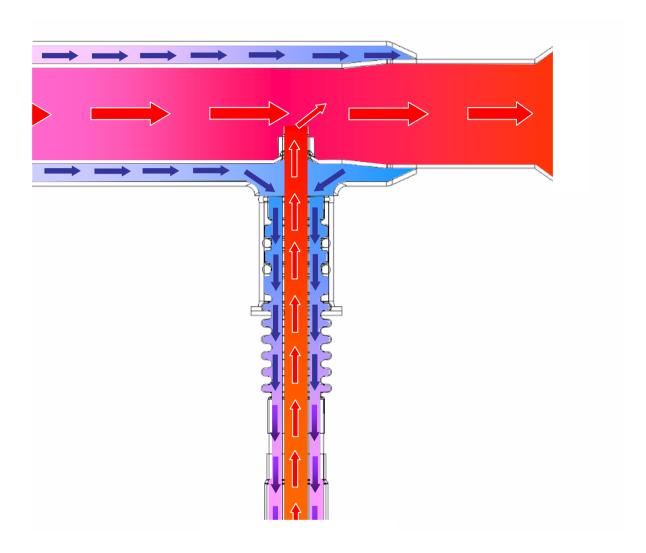


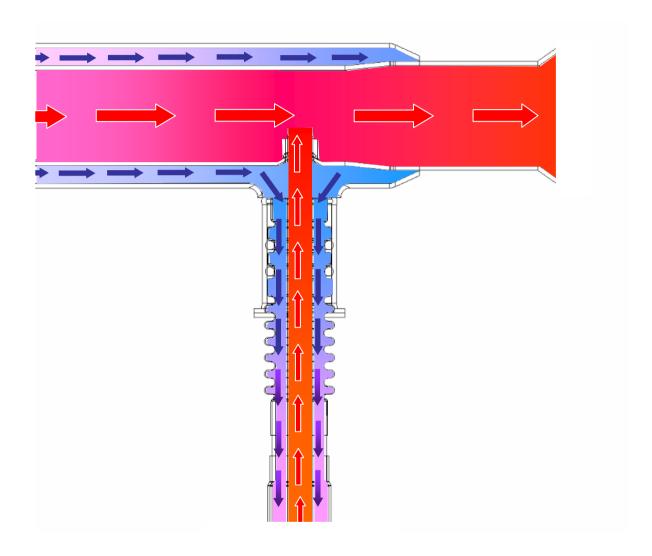


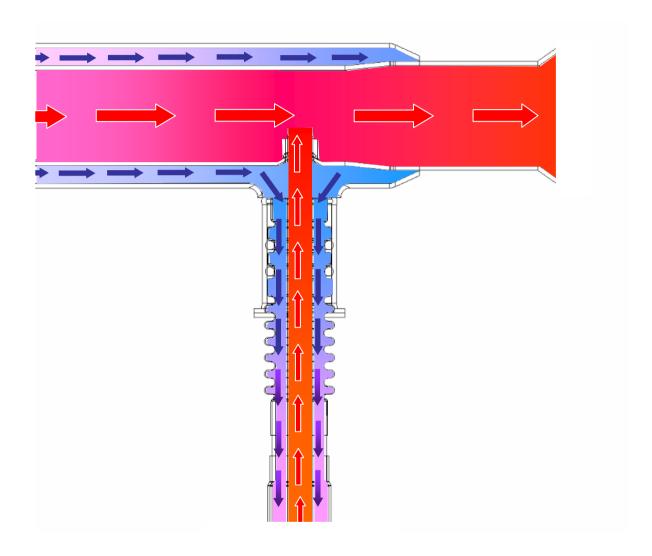


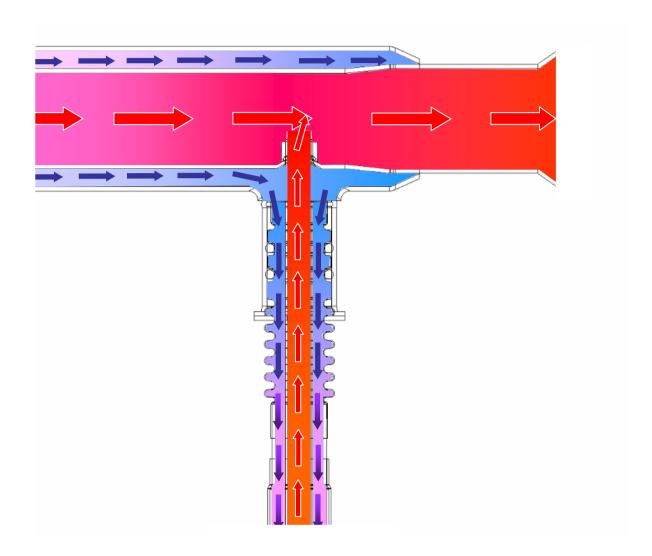


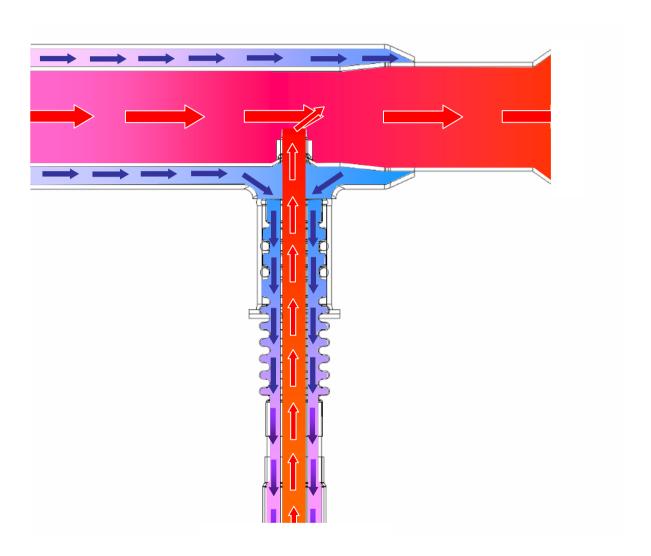


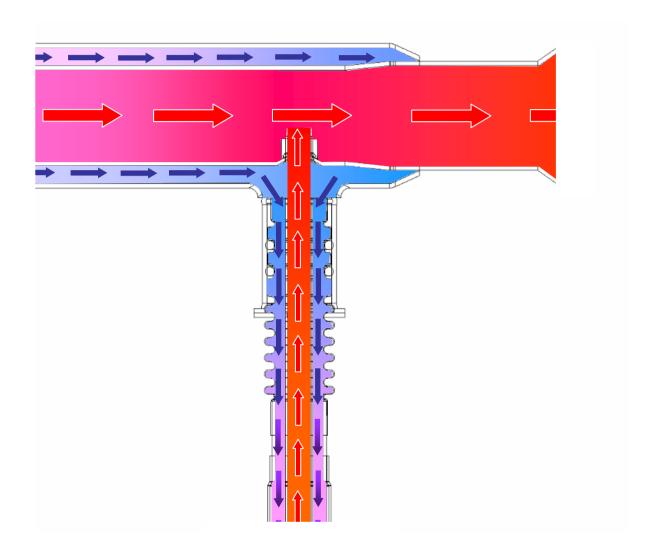


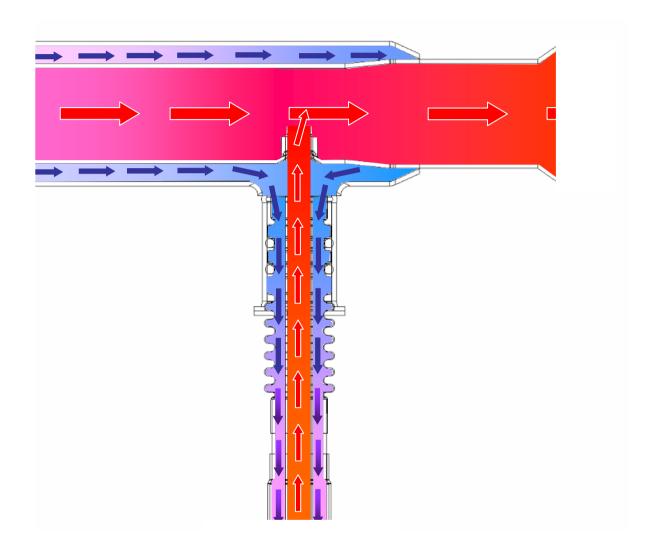


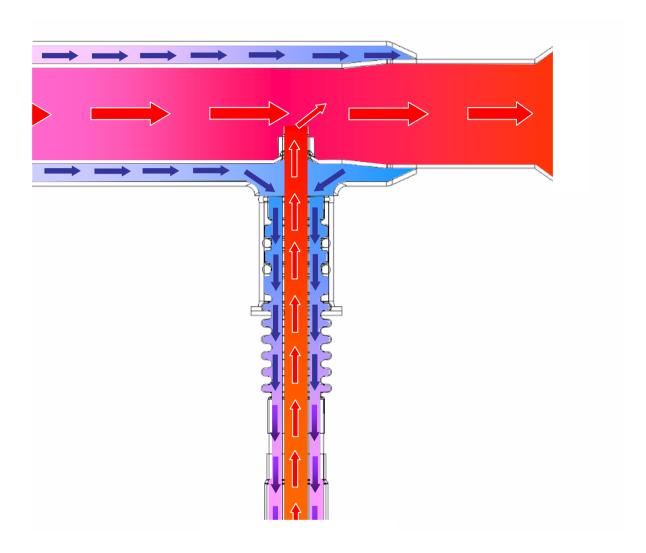












SOLUCIONES ENERGÉTICAS EN EL CAMPO DE LA CLIMATIZACION

Sistema	Descripción		Ahorro Energético	Ahorro Económico
A MITSUBISHI KX6	Caudal Variable de Refrigerante con Bomba de Calor y Recuperación de Calor	Refrigeración y Calefacción	⊘ 75%*	9 27%*
★ MITSURISHI Q-TON	Bomba de calor para producción de Agua Caliente Sanitaria con compresor de CO ₃	Producción de Agua Caliente Sanitaria. Temperatura del agua hasta 90°C	⊘ 78%*	35% *
AISIN GHP	Bomba de calor a gas	Refrigeración, Calefacción y Agua Caliente Sanitaria	② 51%*	46%*
AISIN MCHP	Microcogeneración	Refrigeración, Calefacción, Agua Caliente Sanitaria, Calentamiento de piscinas		33%*
THERMOMAX VARISOL	Colectores Solares Térmicos de Tubo de Vacão	Agua Caliente Sanitaria, Calentamiento de piscinas		100%
BROAD E大空関有限公司 BROAD	Sistema de Absorción	Procesos de cogeneración donde queramos aprovechar la fuente residual de calor procedente de los gases de escape y agua de refrigeración. Frío Solar.		93%*

Para más información contactar con proyectos@lumelco.es 91 203 93 00 www.lumelco.es